Skip to main content

A Multi-agent Model for Polarization Under Confirmation Bias in Social Networks

  • Conference paper
  • First Online:
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2021)

Abstract

We describe a model for polarization in multi-agent systems based on Esteban and Ray’s standard measure of polarization from economics. Agents evolve by updating their beliefs (opinions) based on an underlying influence graph, as in the standard DeGroot model for social learning, but under a confirmation bias; i.e., a discounting of opinions of agents with dissimilar views. We show that even under this bias polarization eventually vanishes (converges to zero) if the influence graph is strongly-connected. If the influence graph is a regular symmetric circulation, we determine the unique belief value to which all agents converge. Our more insightful result establishes that, under some natural assumptions, if polarization does not eventually vanish then either there is a disconnected subgroup of agents, or some agent influences others more than she is influenced. We also show that polarization does not necessarily vanish in weakly-connected graphs under confirmation bias. We illustrate our model with a series of case studies and simulations, and show how it relates to the classic DeGroot model for social learning.

Mário S. Alvim and Bernardo Amorim were partially supported by CNPq, CAPES and FAPEMIG. Santiago Quintero and Frank Valencia were partially supported by the ECOS-NORD project FACTS (C19M03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    W.l.o.g. we can assume the values of \(\pi _i\) are all non-zero and add up to 1.

  2. 2.

    Note that this assumption implies that an agent has an influence on himself, and hence cannot be used as a “puppet” who immediately assumes another’s agent’s belief.

  3. 3.

    Recall from Definition 2 that our model allows arbitrary discretizations \(D_k\) –i.e., different number of bins, with not-necessarily uniform widths– depending on the scenario of interest.

  4. 4.

    It is worthwhile to note that this discontinuity at borderline points matches real scenarios where each bin represents a sharp action an agent takes based on his current belief value. Even when two agents’ beliefs are asymptotically converging to a same borderline value from different sides, their discrete decisions will remain distinct. E.g., in the vaccine case of Example 1, even agents that are asymptotically converging to a common belief value of 0.5 will take different decisions on whether or not to vaccinate, depending on which side of 0.5 their belief falls. In this sense, although there is convergence in the underlying belief values, there remains polarization w.r.t. real-world actions taken by agents.

References

  1. Alvim, M.S., Amorim, B., Knight, S., Quintero, S., Valencia, F.: (2020). https://github.com/Sirquini/Polarization

  2. Alvim, M.S., Amorim, B., Knight, S., Quintero, S., Valencia, F.: A multi-agent model for polarization under confirmation bias in social networks, Technical report. arXiv preprint (2021)

    Google Scholar 

  3. Alvim, M.S., Knight, S., Valencia, F.: Toward a formal model for group polarization in social networks. In: Alvim, M.S., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy. LNCS, vol. 11760, pp. 419–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31175-9_24

    Chapter  Google Scholar 

  4. Aronson, E., Wilson, T., Akert, R.: Social Psychology, 7th edn. Prentice Hall, Upper Saddle River (2010)

    Google Scholar 

  5. Bozdag, E.: Bias in algorithmic filtering and personalization. Ethics Inf. Technol. 15, 209–227 (2013). https://doi.org/10.1007/s10676-013-9321-6

    Article  Google Scholar 

  6. Calais Guerra, P., Meira Jr, W., Cardie, C., Kleinberg, R.: A measure of polarization on social media networks based on community boundaries. In: Proceedings of the 7th International Conference on Weblogs and Social Media, ICWSM 2013, pp. 215–224 (2013)

    Google Scholar 

  7. Cerreia-Vioglio, S., Corrao, R., Lanzani, G., et al.: Robust Opinion Aggregation and its Dynamics. IGIER, Università Bocconi (2020)

    Google Scholar 

  8. Christoff, Z., et al.: Dynamic logics of networks: information flow and the spread of opinion. Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (2016)

    Google Scholar 

  9. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  Google Scholar 

  10. DeMarzo, P.M., Vayanos, D., Zwiebel, J.: Persuasion bias, social influence, and unidimensional opinions. Q. J. Econ. 118(3), 909–968 (2003)

    Article  Google Scholar 

  11. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-53622-3

    Book  MATH  Google Scholar 

  12. Elder, A.: The interpersonal is political: unfriending to promote civic discourse on social media. Ethics Inf. Technol. 22, 15–24 (2019). https://doi.org/10.1007/s10676-019-09511-4

    Article  MathSciNet  Google Scholar 

  13. Esteban, J.M., Ray, D.: On the measurement of polarization. Econometrica 62(4), 819–851 (1994)

    Article  Google Scholar 

  14. Gargiulo, F., Gandica, Y.: The role of homophily in the emergence of opinion controversies. arXiv preprint arXiv:1612.05483 (2016)

  15. Golub, B., Jackson, M.O.: Naive learning in social networks and the wisdom of crowds. Am. Econ. Jo.: Microecon. 2(1), 112–49 (2010)

    Google Scholar 

  16. Golub, B., Sadler, E.: Learning in social networks. Available at SSRN 2919146 (2017)

    Google Scholar 

  17. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence, models, analysis and simulation. J. Artif. Soc. Soc. Simul. 5(3), 2 (2002)

    Google Scholar 

  18. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope. arXiv preprint arXiv:0812.1045 (2008)

  19. Hunter, A.: Reasoning about trust and belief change on a social network: a formal approach. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp. 783–801. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72359-4_49

    Chapter  Google Scholar 

  20. Li, L., Scaglione, A., Swami, A., Zhao, Q.: Consensus, polarization and clustering of opinions in social networks. IEEE J. Sel. Areas Commun. 31(6), 1072–1083 (2013)

    Article  Google Scholar 

  21. Liu, F., Seligman, J., Girard, P.: Logical dynamics of belief change in the community. Synthese 191(11), 2403–2431 (2014). https://doi.org/10.1007/s11229-014-0432-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, Boston (1996)

    MATH  Google Scholar 

  23. Mao, Y., Bolouki, S., Akyol, E.: Spread of information with confirmation bias in cyber-social networks. IEEE Trans. Netw. Sci. Eng. 7(2), 688–700 (2020)

    Article  MathSciNet  Google Scholar 

  24. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  25. Mueller-Frank, M.: Reaching consensus in social networks. IESE Research Papers D/1116, IESE Business School (2015)

    Google Scholar 

  26. Myers, D.G., Lamm, H.: The group polarization phenomenon. Psychol. Bull. 83, 602 (1976)

    Article  Google Scholar 

  27. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint programming: denotation, logic and applications. Nord. J. Comput. 9(1), 145–188 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Pedersen, M.Y.: Polarization and echo chambers: a logical analysis of balance and triadic closure in social networks (2019)

    Google Scholar 

  29. Pedersen, M.Y., Smets, S., Ågotnes, T.: Analyzing echo chambers: a logic of strong and weak ties. In: Blackburn, P., Lorini, E., Guo, M. (eds.) LORI 2019. LNCS, vol. 11813, pp. 183–198. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60292-8_14

    Chapter  MATH  Google Scholar 

  30. Pedersen, M.Y., Smets, S., Ågotnes, T.: Further steps towards a logic of polarization in social networks. In: Dastani, M., Dong, H., van der Torre, L. (eds.) CLAR 2020. LNCS (LNAI), vol. 12061, pp. 324–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44638-3_20

    Chapter  Google Scholar 

  31. Proskurnikov, A.V., Matveev, A.S., Cao, M.: Opinion dynamics in social networks with hostile camps: consensus vs. polarization. IEEE Trans. Autom. Control 61(6), 1524–1536 (2016)

    Article  MathSciNet  Google Scholar 

  32. Ramos, V.J.: Analyzing the Role of Cognitive Biases in the Decision-Making Process. IGI Global, Hershey (2019)

    Book  Google Scholar 

  33. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent constraint programming. In: LICS, pp. 71–80. IEEE Computer Society (1994)

    Google Scholar 

  34. Seligman, J., Liu, F., Girard, P.: Logic in the community. In: Banerjee, M., Seth, A. (eds.) ICLA 2011. LNCS (LNAI), vol. 6521, pp. 178–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18026-2_15

    Chapter  MATH  Google Scholar 

  35. Seligman, J., Liu, F., Girard, P.: Facebook and the epistemic logic of friendship. CoRR abs/1310.6440 (2013)

    Google Scholar 

  36. Sikder, O., Smith, R., Vivo, P., Livan, G.: A minimalistic model of bias, polarization and misinformation in social networks. Sci. Rep. 10, 1–11 (2020)

    Article  Google Scholar 

  37. Sîrbu, A., Pedreschi, D., Giannotti, F., Kertész, J.: Algorithmic bias amplifies opinion polarization: a bounded confidence model. arXiv preprint arXiv:1803.02111 (2018)

  38. Sohrab, H.H.: Basic Real Analysis, 2nd edn. Birkhauser, Basel (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário S. Alvim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvim, M.S., Amorim, B., Knight, S., Quintero, S., Valencia, F. (2021). A Multi-agent Model for Polarization Under Confirmation Bias in Social Networks. In: Peters, K., Willemse, T.A.C. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2021. Lecture Notes in Computer Science(), vol 12719. Springer, Cham. https://doi.org/10.1007/978-3-030-78089-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78089-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78088-3

  • Online ISBN: 978-3-030-78089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics