Skip to main content

Finding Long Cycles in Balanced Tripartite Graphs: A First Step

  • Chapter
  • First Online:
Research Trends in Graph Theory and Applications

Abstract

We consider the problem of finding long cycles in balanced tripartite graphs. We survey the relevant literature, namely degree and edge conditions for Hamiltonicity and long cycles in graphs, including bipartite and k-partite results where they exist. We then prove that if G is a balanced tripartite graph on 3n vertices, G must contain a cycle of length at least 3n − 1, provided that e(G) ≥ 3n 2 − 4n + 5 and n ≥ 14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Adamus. Edge condition for Hamiltonicity in balanced tripartite graphs. Opuscula Mathematica 29 337–343 (2009).

    Article  MathSciNet  Google Scholar 

  2. J. Adamus and L. Adamus. Ore and Erdös type conditions for long cycles in balanced bipartite graphs. Discrete Mathematics and Theoretical Computer Science 11 57–69 (2009).

    MathSciNet  MATH  Google Scholar 

  3. L. Adamus. Edge condition for long cycles in bipartite graphs. Discrete Mathematics and Theoretical Computer Science 11 25–32 (2009).

    MathSciNet  MATH  Google Scholar 

  4. J. S. Bagga and B.N, Varma. Hamiltonian properties in bipartite graphs. Bulletin of the Institute of Combinatorics and its Applications 26 71–85 (1999).

    Google Scholar 

  5. J.-C. Bermond. On Hamiltonian walks. In: Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aerdeen, 1975), Congressus Numerantium XV, 41–51 (1976).

    Google Scholar 

  6. G. Chartrand, L. Lesniak and P. Zhang. Graphs & Digraphs. 6th.ed., CRC Press, Taylor & Francis Group, Boca Raton, FL (2016).

    Google Scholar 

  7. G. Chen and M.S. Jacobson. Degree sum conditions for Hamiltonicity on k-partite graphs. Graphs and Combinatorics 13 325–343 (1997).

    Article  MathSciNet  Google Scholar 

  8. G. Chen, R. J. Faudree, R. Gould, M.S. Jacobson and L. Lesniak. Hamiltonicity in balanced k-partite graphs. Graphs and Combinatorics 11 221–231 (1995).

    Article  MathSciNet  Google Scholar 

  9. L. DeBiasio, R. A. Krueger, D. Pritikin and E. Thompson. Hamiltonian cycles in k-partite graphs. Journal of Graph Theory 94 92-112 (2020).

    Article  MathSciNet  Google Scholar 

  10. G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London Mathematical Society 3 69–81 (1952).

    Article  MathSciNet  Google Scholar 

  11. D. Ferrero and L. Lesniak. Chorded pancyclicity in k-partite graphs. Graphs and Combinatorics 34 1565–1580 (2018).

    Article  MathSciNet  Google Scholar 

  12. J. Mitchem and E. Schmeichel, Pancyclic and bipancyclic graphs—a survey. In: Graphs and applications (Boulder, Colorado, 1982) Wiley-Interscience. 271–278 (1985).

    Google Scholar 

  13. J. Moon and L. Moser. On Hamiltonian bipartite graphs. Israel Journal of Mathematics 1 163–165 (1963).

    Article  MathSciNet  Google Scholar 

  14. O. Ore. Note on Hamilton circuits. American Mathematical Monthly 67 p. 55 (1960).

    Article  MathSciNet  Google Scholar 

  15. O. Ore. Arc coverings of graphs. Annali di Matematica Pura ed Applicata. Serie Quarta 55 315–321 (1961).

    Article  MathSciNet  Google Scholar 

  16. L. Pósa. On the circuits of finite graphs. A Magyar Tudomanyos Akademia Matematikai Kutató Intezetenek Közleményei 8 55–361 (1964).

    MATH  Google Scholar 

  17. L. Pósa. A theorem concerning Hamilton lines. A Magyar Tudomanyos Akademia Matematikai Kutató Intezetenek Közleményei 7 225–226 (1962).

    MathSciNet  MATH  Google Scholar 

  18. P. Turán. On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48 436–452 (1941).

    MathSciNet  Google Scholar 

  19. D. B. West. Introduction to Graph Theory. 2nd. ed. Prentice Hall, Upper Saddle River, NJ (2001).

    Google Scholar 

  20. D. R. Woodall. Sufficient conditions for circuits in graphs. Proceedings of the London Mathematical Society third series 24 739–755 (1972).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work described in this article is a result of a collaboration made possible by the IMA’s Workshop for Women in Graph Theory and Applications. Research of the fifth author was supported in part by NSF grant DMS-1839918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Lesniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araujo-Pardo, G. et al. (2021). Finding Long Cycles in Balanced Tripartite Graphs: A First Step. In: Ferrero, D., Hogben, L., Kingan, S.R., Matthews, G.L. (eds) Research Trends in Graph Theory and Applications. Association for Women in Mathematics Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-77983-2_1

Download citation

Publish with us

Policies and ethics