Abstract
We consider the problem of finding long cycles in balanced tripartite graphs. We survey the relevant literature, namely degree and edge conditions for Hamiltonicity and long cycles in graphs, including bipartite and k-partite results where they exist. We then prove that if G is a balanced tripartite graph on 3n vertices, G must contain a cycle of length at least 3n − 1, provided that e(G) ≥ 3n 2 − 4n + 5 and n ≥ 14.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. Adamus. Edge condition for Hamiltonicity in balanced tripartite graphs. Opuscula Mathematica 29 337–343 (2009).
J. Adamus and L. Adamus. Ore and Erdös type conditions for long cycles in balanced bipartite graphs. Discrete Mathematics and Theoretical Computer Science 11 57–69 (2009).
L. Adamus. Edge condition for long cycles in bipartite graphs. Discrete Mathematics and Theoretical Computer Science 11 25–32 (2009).
J. S. Bagga and B.N, Varma. Hamiltonian properties in bipartite graphs. Bulletin of the Institute of Combinatorics and its Applications 26 71–85 (1999).
J.-C. Bermond. On Hamiltonian walks. In: Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aerdeen, 1975), Congressus Numerantium XV, 41–51 (1976).
G. Chartrand, L. Lesniak and P. Zhang. Graphs & Digraphs. 6th.ed., CRC Press, Taylor & Francis Group, Boca Raton, FL (2016).
G. Chen and M.S. Jacobson. Degree sum conditions for Hamiltonicity on k-partite graphs. Graphs and Combinatorics 13 325–343 (1997).
G. Chen, R. J. Faudree, R. Gould, M.S. Jacobson and L. Lesniak. Hamiltonicity in balanced k-partite graphs. Graphs and Combinatorics 11 221–231 (1995).
L. DeBiasio, R. A. Krueger, D. Pritikin and E. Thompson. Hamiltonian cycles in k-partite graphs. Journal of Graph Theory 94 92-112 (2020).
G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London Mathematical Society 3 69–81 (1952).
D. Ferrero and L. Lesniak. Chorded pancyclicity in k-partite graphs. Graphs and Combinatorics 34 1565–1580 (2018).
J. Mitchem and E. Schmeichel, Pancyclic and bipancyclic graphs—a survey. In: Graphs and applications (Boulder, Colorado, 1982) Wiley-Interscience. 271–278 (1985).
J. Moon and L. Moser. On Hamiltonian bipartite graphs. Israel Journal of Mathematics 1 163–165 (1963).
O. Ore. Note on Hamilton circuits. American Mathematical Monthly 67 p. 55 (1960).
O. Ore. Arc coverings of graphs. Annali di Matematica Pura ed Applicata. Serie Quarta 55 315–321 (1961).
L. Pósa. On the circuits of finite graphs. A Magyar Tudomanyos Akademia Matematikai Kutató Intezetenek Közleményei 8 55–361 (1964).
L. Pósa. A theorem concerning Hamilton lines. A Magyar Tudomanyos Akademia Matematikai Kutató Intezetenek Közleményei 7 225–226 (1962).
P. Turán. On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48 436–452 (1941).
D. B. West. Introduction to Graph Theory. 2nd. ed. Prentice Hall, Upper Saddle River, NJ (2001).
D. R. Woodall. Sufficient conditions for circuits in graphs. Proceedings of the London Mathematical Society third series 24 739–755 (1972).
Acknowledgements
The work described in this article is a result of a collaboration made possible by the IMA’s Workshop for Women in Graph Theory and Applications. Research of the fifth author was supported in part by NSF grant DMS-1839918.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Araujo-Pardo, G. et al. (2021). Finding Long Cycles in Balanced Tripartite Graphs: A First Step. In: Ferrero, D., Hogben, L., Kingan, S.R., Matthews, G.L. (eds) Research Trends in Graph Theory and Applications. Association for Women in Mathematics Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-77983-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-77983-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77982-5
Online ISBN: 978-3-030-77983-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)