Skip to main content

Description of Electricity Consumption by Using Leading Hours Intra-day Model

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

This paper focuses on parametrization of one-day time series of electricity consumption. In order to parametrize such time series data mining technique was elaborated. The technique is based on the multivariate linear regression and is self-configurable, in other words a user does not need to set any model parameters upfront. The model finds the most essential data points whose values allow to model the electricity consumptions for remaining hours in the same day. The number of data points required to describe the whole time series depends on the demanded precision which is up to the user. We showed that the model with only four describing variables, describes 20 remaining hours very well, exhibiting dominant relative error about 1.5%. It is characterized by a high precision and allows finding non-typical days from the electricity demand point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pérez-Arriaga, I.J. (ed.): Regulation of the Power Sector. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5034-3

  2. Khatoon, S., Ibraheem, Arunesh, Kr.S., Priti: Effects of various factors on electric load forecasting: an overview. In: 6th IEEE Power India International Conference (PIICON), Delhi, pp. 1–5 (2014)

    Google Scholar 

  3. Kremers, E.: Modelling and Simulation of Electrical Energy Systems through a Complex Systems Approach using Agent-Based Models. KIT Scientific Publishing, Karlsruhe (2013)

    Google Scholar 

  4. Neng, S., Jingjing, Z., Wenjie, Z.: Energy efficiency measures and convergence in China. Taking into account the effects of environmental and random factors. Pol. J. Environ. Stud. 24(1), 257–267 (2015)

    Google Scholar 

  5. Li, J., Yang, L., Long, H.: Climatic impacts on energy consumption: Intensive and extensive margins. Energy Econ. 71, 332–343 (2018)

    Article  Google Scholar 

  6. McCulloch, J., Ignatieva, K.: Forecasting high frequency intra-day electricity demand using temperature. SSRN Electron. J. (2017)

    Google Scholar 

  7. Xie, J., Hong, T.: Wind speed for load forecasting models. Sustainability 9(5), 795 (2017)

    Article  Google Scholar 

  8. Kalimoldayev, M., Drozdenko, A., Koplyk, I., Abdildayeva, M.A., Zhukabayeva, T.: Analysis of modern approaches for the prediction of electric energy consumption. Open Eng. 10, 350–361 (2020)

    Article  Google Scholar 

  9. Manowska, A.: Using the LSTM Network to forecast the demand for Electricity in Poland. Appl. Sci. 10, 8455 (2020)

    Article  Google Scholar 

  10. Del Real, A.J., Dorado, F., Duran, J.: Energy demand forecasting using deep learning: applications for the French grid. Energies 13, 2242 (2020)

    Article  Google Scholar 

  11. Kang, T., Lim, D.Y., Tayara, H., Chong, K.T.: Forecasting of power demands using deep learning. Appl. Sci. 20, 7241 (2020)

    Article  Google Scholar 

  12. Ciechulski, T., Osowski, S.: Deep learning approach to power demand forecasting in Polish power system. Energies 13, 6154 (2020)

    Article  Google Scholar 

  13. Elias Barrón, I., et al.: Genetic algorithm with radial basis mapping network for the electricity consumption modeling. Appl. Sci. 10, 4239 (2020)

    Article  Google Scholar 

  14. Gajowniczek, K., Nafkha, R., Ząbkowski, T.: Seasonal peak demand classification with machine learning techniques. In: 2018 International Conference on Applied Mathematics & Computer Science (ICAMCS), pp. 101–1014 (2018)

    Google Scholar 

  15. Dudek, G.: Neural networks for pattern-based short-term load forecasting: a comparative study. Neurocomputing 205, 64–74 (2016)

    Article  Google Scholar 

  16. Dudek, G.: Pattern-based local linear regression models for short-term load forecasting. Electr. Power Syst. Res. 130, 139–147 (2016)

    Article  Google Scholar 

  17. Fan, G.F., Qing, S., Wang, H., Hong, W.C., Li, H.J.: Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting. Energies 6, 1887–1901 (2013)

    Article  Google Scholar 

  18. Divina, F., Torres, M.G., Vela, F.A.G., Noguera, J.L.V.: A comparative study of time series forecasting methods for short term electric energy consumption prediction in smart buildings. Energies 12, 1934 (2019)

    Article  Google Scholar 

  19. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22, 443–473 (2006)

    Article  Google Scholar 

  20. Halepoto, I.A., Uqaili, M.A., Chowdhry, B.S.: Least square regression based integrated multi-parameteric demand modeling for short term load forecasting. Mehran Univ. Res. J. Eng. Technol. 33(2), 215–226 (2014)

    Google Scholar 

  21. Vu, D.H., Muttaqi, K.M., Agalgaonkar, A.P.: A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy 140, 385–394 (2015)

    Article  Google Scholar 

  22. Ghandoor, A., Samhouri, M.: Electricity consumption in the industrial sector of Jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques. Jordan J. Mech. Ind. Eng. 3(1), 69–76 (2009)

    Google Scholar 

  23. Karpio, K., Łukasiewicz, P., Nafkha, R.: Regression technique for electricity load modeling and outlined data points explanation. In: Pejaś, J., El Fray, I., Hyla, T., Kacprzyk, J. (eds.) ACS 2018. AISC, vol. 889, pp. 56–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03314-9_5

    Chapter  Google Scholar 

  24. Polish power system dataset. http://www.pse.pl/index.php?dzid=77. Accessed 12 Aug 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafik Nafkha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karpio, K., Łukasiewicz, P., Nafkha, R., Orłowski, A. (2021). Description of Electricity Consumption by Using Leading Hours Intra-day Model. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12745. Springer, Cham. https://doi.org/10.1007/978-3-030-77970-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77970-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77969-6

  • Online ISBN: 978-3-030-77970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics