Skip to main content

PathMEx: Pathway-Based Mutual Exclusivity for Discovering Rare Cancer Driver Mutations

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12743))

Included in the following conference series:

  • 1590 Accesses

Abstract

The genetic material we carry today is different from that we were born with: our DNA is prone to mutations. Some of these mutations can make a cell divide without control, resulting in a growing tumor. Typically, in a cancer sample from a patient, a large number of mutations can be detected, and only a few of those are drivers - mutations that positively contribute to tumor growth. The majority are passenger mutations that either accumulated before the onset of the disease but did not cause it, or are byproducts of the genetic instability of cancer cells. One of the key questions in understanding the process of cancer development is which mutations are drivers, and should be analyzed as potential diagnostic markers or targets for therapeutics, and which are passengers. We propose PathMEx, a novel method based on simultaneous optimization of patient coverage, mutation mutual exclusivity, and pathway overlap among putative cancer driver genes. Compared to state-of-the-art method Dendrix, the proposed algorithm finds sets of putative driver genes of higher quality in three sets of cancer samples: brain, lung, and breast tumors. The genes in the solutions belong to pathways with known associations with cancer. The results show that PathMEx is a tool that should be part of a state-of-the-art toolbox in the driver gene discovery pipeline. It can help detect low-frequency driver genes that can be missed by existing methods.

Supported by NSF grant IIS-1453658.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adzhubei, I.A., et al.: A method and server for predicting damaging missense mutations. Nat. Methods 7(4), 248–249 (2010)

    Article  Google Scholar 

  2. Arodź, T., Płonka, P.M.: Effects of point mutations on protein structure are nonexponentially distributed. Proteins Struct. Funct. Bioinf. 80(7), 1780–1790 (2012)

    Article  Google Scholar 

  3. Bertram, J.S.: The molecular biology of cancer. Mol. Aspects Med. 21(6), 167–223 (2000)

    Article  Google Scholar 

  4. Bignell, G.R., et al.: Signatures of mutation and selection in the cancer genome. Nature 463(7283), 893–898 (2010)

    Article  Google Scholar 

  5. Bokhari, Y., Alhareeri, A., Arodz, T.: QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency. BMC Bioinf. 21(1), 1–12 (2020)

    Article  Google Scholar 

  6. Bokhari, Y., Arodz, T.: QuaDMutEx: quadratic driver mutation explorer. BMC Bioinf. 18(1), 1–15 (2017)

    Article  Google Scholar 

  7. Carter, H., et al.: Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Can. Res. 69(16), 6660–6667 (2009)

    Article  Google Scholar 

  8. Ceraudo, E., et al.: Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. J. Biol. Chem. 296, 100163 (2021)

    Article  Google Scholar 

  9. Chapman, M.A., et al.: Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339), 467–472 (2011)

    Article  Google Scholar 

  10. Chen, Y., et al.: Identification of druggable cancer driver genes amplified across TCGA datasets. PLoS One 9(5), e98293 (2014)

    Article  Google Scholar 

  11. Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398–406 (2012)

    Article  Google Scholar 

  12. Damodaran, S., et al.: Cancer Driver Log (CanDL): catalog of potentially actionable cancer mutations. J. Mol. Diagn. 17(5), 554–559 (2015)

    Article  Google Scholar 

  13. Deaglio, S., Mehta, K., Malavasi, F.: Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk. Res. 25(1), 1–12 (2001)

    Article  Google Scholar 

  14. Dees, N.D., et al.: MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22(8), 1589–1598 (2012)

    Article  Google Scholar 

  15. Do, K., Doroshow, J.H., Kummar, S.: Wee1 kinase as a target for cancer therapy. Cell Cycle 12(19), 3348–3353 (2013)

    Article  Google Scholar 

  16. Holmes, R.S., Cox, L.A., VandeBerg, J.L.: Mammalian carboxylesterase 3: comparative genomics and proteomics. Genetica 138(7), 695–708 (2010)

    Article  Google Scholar 

  17. Hua, X., Xu, H., Yang, Y., Zhu, J., Liu, P., Lu, Y.: DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies. Am. J. Hum. Genet. 93(3), 439–451 (2013)

    Article  Google Scholar 

  18. Huang, L., et al.: KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a. Cell Death Dis. 4(8), e745 (2013)

    Google Scholar 

  19. Johnson, M., Sharma, M., Henderson, B.R.: IQGAP1 regulation and roles in cancer. Cell. Signal. 21(10), 1471–1478 (2009)

    Article  Google Scholar 

  20. Kandoth, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)

    Article  Google Scholar 

  21. Kobayashi, K., et al.: Identification of genes whose expression is upregulated in lung adenocarcinoma cells in comparison with type II alveolar cells and bronchiolar epithelial cells in vivo. Oncogene 23(17), 3089–3096 (2004)

    Article  Google Scholar 

  22. Kuang, S., et al.: Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22(8), 1529–1538 (2008)

    Article  Google Scholar 

  23. Lai, Y.H., et al.: SOX4 interacts with plakoglobin in a Wnt3a-dependent manner in prostate cancer cells. BMC Cell Biol. 12(1), 50 (2011)

    Article  Google Scholar 

  24. Lawrence, M.S., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)

    Article  Google Scholar 

  25. Leiserson, M.D., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLoS Comput. Biol. 9(5), e1003054 (2013)

    Article  Google Scholar 

  26. Leiserson, M.D., Wu, H.T., Vandin, F., Raphael, B.J.: CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer. Genome Biol. 16(1), 1 (2015)

    Article  Google Scholar 

  27. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., Mesirov, J.P.: Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12), 1739–1740 (2011)

    Article  Google Scholar 

  28. Lionberger, J.M., Smithgall, T.E.: The c-Fes protein-tyrosine kinase suppresses cytokine-independent outgrowth of myeloid leukemia cells induced by Bcr-Abl. Can. Res. 60(4), 1097–1103 (2000)

    Google Scholar 

  29. Liu, E.M., Martinez-Fundichely, A., Bollapragada, R., Spiewack, M., Khurana, E.: CNCDatabase: a database of non-coding cancer drivers. Nucleic Acids Res. 49(D1), D1094–D1101 (2021)

    Article  Google Scholar 

  30. Liu, S.H., et al.: DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic Acids Res. 48(D1), D863–D870 (2020)

    Google Scholar 

  31. Liu, T., et al.: p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J. Biol. Chem. 288(5), 3359–3369 (2013)

    Article  Google Scholar 

  32. Loeb, L.A.: Human cancers express mutator phenotypes: origin, consequences and targeting. Nat. Rev. Cancer 11(6), 450–457 (2011)

    Article  Google Scholar 

  33. Mahajan, K., Mahajan, N.: ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers. Oncogene 34(32), 4162–4167 (2015)

    Article  Google Scholar 

  34. Martinez-Ledesma, E., de Groot, J.F., Verhaak, R.G.: Seek and destroy: relating cancer drivers to therapies. Cancer Cell 27(3), 319–321 (2015)

    Article  Google Scholar 

  35. McCormick, F.: Signalling networks that cause cancer. Trends Biochem. Sci. 24(12), M53–M56 (1999)

    Article  Google Scholar 

  36. Miller, C.A., Settle, S.H., Sulman, E.P., Aldape, K.D., Milosavljevic, A.: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Med. Genomics 4(1), 1 (2011)

    Article  Google Scholar 

  37. Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13), 3812–3814 (2003)

    Article  Google Scholar 

  38. Osman, M.A., Antonisamy, W.J., Yakirevich, E.: IQGAP1 control of centrosome function defines distinct variants of triple negative breast cancer. Oncotarget 11(26), 2493 (2020)

    Article  Google Scholar 

  39. Pon, J.R., Marra, M.A.: Driver and passenger mutations in cancer. Annu. Rev. Pathol. 10, 25–50 (2015)

    Article  Google Scholar 

  40. Reva, B., Antipin, Y., Sander, C.: Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, gkr407 (2011)

    Google Scholar 

  41. Schuster, S.C.: Next-generation sequencing transforms today’s biology. Nature 200(8), 16–18 (2007)

    Google Scholar 

  42. Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, I., Forbes, S.A.: The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18(11), 696–705 (2018)

    Article  Google Scholar 

  43. Szczurek, E., Beerenwinkel, N.: Modeling mutual exclusivity of cancer mutations. PLoS Comput. Biol. 10(3), e1003503 (2014)

    Article  Google Scholar 

  44. Tomasetti, C., Vogelstein, B., Parmigiani, G.: Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. 110(6), 1999–2004 (2013)

    Article  Google Scholar 

  45. Vandin, F., Upfal, E., Raphael, B.J.: Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18(3), 507–522 (2011)

    Article  MathSciNet  Google Scholar 

  46. Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012)

    Article  Google Scholar 

  47. Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nat. Med. 10(8), 789–799 (2004)

    Article  Google Scholar 

  48. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)

    Article  Google Scholar 

  49. Wang, D., DuBois, R.N.: Eicosanoids and cancer. Nat. Rev. Cancer 10(3), 181–193 (2010)

    Article  Google Scholar 

  50. Weinstein, J.N., et al.: The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113–1120 (2013)

    Article  Google Scholar 

  51. Wendl, M.C., et al.: PathScan: a tool for discerning mutational significance in groups of putative cancer genes. Bioinformatics 27(12), 1595–1602 (2011)

    Article  Google Scholar 

  52. Yeang, C.H., McCormick, F., Levine, A.: Combinatorial patterns of somatic gene mutations in cancer. FASEB J. 22(8), 2605–2622 (2008)

    Article  Google Scholar 

  53. Zhao, J., Zhang, S., Wu, L.Y., Zhang, X.S.: Efficient methods for identifying mutated driver pathways in cancer. Bioinformatics 28(22), 2940–2947 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

TA is supported by NSF grant IIS-1453658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Arodz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bokhari, Y., Arodz, T. (2021). PathMEx: Pathway-Based Mutual Exclusivity for Discovering Rare Cancer Driver Mutations. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12743. Springer, Cham. https://doi.org/10.1007/978-3-030-77964-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77964-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77963-4

  • Online ISBN: 978-3-030-77964-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics