Skip to main content

Recurrent Autoencoder with Sequence-Aware Encoding

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12743))

Included in the following conference series:

  • 1746 Accesses

Abstract

Recurrent Neural Networks (RNN) received a vast amount of attention last decade. Recently, the architectures of Recurrent AutoEncoders (RAE) found many applications in practice. RAE can extract the semantically valuable information, called context that represents a latent space useful for further processing. Nevertheless, recurrent autoencoders are hard to train, and the training process takes much time. This paper proposes a new recurrent autoencoder architecture with sequence-aware encoding (RAES), and its second variant which employs a 1D Convolutional layer (RAESC) to improve its performance and flexibility. We discuss the advantages and disadvantages of the solution and prove that the recurrent autoencoder with sequence-aware encoding outperforms a standard RAE in terms of model training time in most cases. The extensive experiments performed on a dataset of generated sequences of signals shows the advantages of RAES(C). The results show that the proposed solution dominates over the standard RAE, and the training process is the order of magnitude faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  4. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59(4–5), 291–294 (1988). https://doi.org/10.1007/BF00332918

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiang, H.T., Hsieh, Y.Y., Fu, S.W., Hung, K.H., Tsao, Y., Chien, S.Y.: Noise reduction in ECG signals using fully convolutional denoising autoencoders. IEEE Access 7, 60806–60813 (2019)

    Article  Google Scholar 

  6. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. CoRR abs/1409.1259 (2014). http://arxiv.org/abs/1409.1259

  7. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  8. Ding, J., Wang, Y.: WiFi CSI-based human activity recognition using deep recurrent neural network. IEEE Access 7, 174257–174269 (2019)

    Article  Google Scholar 

  9. Doya, K.: Bifurcations of recurrent neural networks in gradient descent learning. IEEE Trans. Neural Netw. 1(75), 218 (1993)

    Google Scholar 

  10. Fabius, O., van Amersfoort, J.R.: Variational recurrent auto-encoders. arXiv preprint arXiv:1412.6581 (2014)

  11. Gârbacea, C., et al.: Low bit-rate speech coding with VQ-VAE and a wavenet decoder. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 735–739. IEEE (2019)

    Google Scholar 

  12. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Kieu, T., Yang, B., Guo, C., Jensen, C.S.: Outlier detection for time series with recurrent autoencoder ensembles. In: IJCAI, pp. 2725–2732 (2019)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Liao, W., Guo, Y., Chen, X., Li, P.: A unified unsupervised gaussian mixture variational autoencoder for high dimensional outlier detection. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 1208–1217. IEEE (2018)

    Google Scholar 

  17. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

  18. Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., Khudanpur, S.: Extensions of recurrent neural network language model. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5528–5531. IEEE (2011)

    Google Scholar 

  19. Nanduri, A., Sherry, L.: Anomaly detection in aircraft data using recurrent neural networks (RNN). In: 2016 Integrated Communications Navigation and Surveillance (ICNS), pp. 5C2-1. IEEE (2016)

    Google Scholar 

  20. van den Oord, A., et al.: WaveNet: a generative model for raw audio (2016). https://arxiv.org/abs/1609.03499

  21. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to construct deep recurrent neural networks. In: Proceedings of the Second International Conference on Learning Representations (ICLR 2014) (2014)

    Google Scholar 

  22. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  23. Shahtalebi, S., Atashzar, S.F., Patel, R.V., Mohammadi, A.: Training of deep bidirectional RNNs for hand motion filtering via multimodal data fusion. In: GlobalSIP, pp. 1–5 (2019)

    Google Scholar 

  24. Shi, Y., Hwang, M.Y., Lei, X., Sheng, H.: Knowledge distillation for recurrent neural network language modeling with trust regularization. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7230–7234. IEEE (2019)

    Google Scholar 

  25. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837 (2019)

    Google Scholar 

  26. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  27. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, pp. 6306–6315 (2017)

    Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  29. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  30. Yang, Y., Sautière, G., Ryu, J.J., Cohen, T.S.: Feedback recurrent autoencoder. In: ICASSP 2020, 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3347–3351. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Susik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Susik, R. (2021). Recurrent Autoencoder with Sequence-Aware Encoding. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12743. Springer, Cham. https://doi.org/10.1007/978-3-030-77964-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77964-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77963-4

  • Online ISBN: 978-3-030-77964-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics