Skip to main content

Fast and Accurate Determination of Graph Node Connectivity Leveraging Approximate Methods

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12742))

Included in the following conference series:

  • 1525 Accesses

Abstract

For an undirected graph G, the node connectivity K is defined as the minimum number of nodes that must be removed to make the graph disconnected. The determination of K is a computationally demanding task for large graphs since even the most efficient algorithms require many evaluations of an expensive max flow function. Approximation methods for determining K replace the max flow function with a much faster algorithm that gives a lower bound on the number of node independent paths, but this frequently leads to an underestimate of K. We show here that with minor changes, the approximate method can be adapted to retain most of the performance benefits while still guaranteeing an accurate result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreager, D.A., Rulison, K., Moody, J.: Delinquency and the structure of adolescent peer groups. Criminol. 49(1), 95–127 (2011)

    Article  Google Scholar 

  2. Mani, D., Moody, J.: Moving beyond stylized economic network models: the hybrid world of the Indian firm ownership network. AJS Am. J. Sociol. 119(8), 1629 (2014)

    Article  Google Scholar 

  3. Moody, J., Coleman, J.: Clustering and cohesion in networks: concepts and measures. International Encyclopedia of Social and Behavioral Sciences (2014)

    Google Scholar 

  4. Moody, J., Mucha, P.J.: Portrait of political party polarization. Netw. Sci. 1(01), 119–121 (2013)

    Article  Google Scholar 

  5. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  6. Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Notices of the AMS 56(9), 1082–1097 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Sporns, O.: Graph theory methods for the analysis of neural connectivity patterns. In: Neuroscience databases, pp. 171–185. Springer (2003). https://doi.org/10.1007/978-1-4615-1079-6_12

    Chapter  Google Scholar 

  8. Esfahanian, A.H.: Connectivity algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf. (2013)

  9. Menger, K.: Zur allgemeinen kurventheorie. Fundam. Math. 10(1), 96–115 (1927)

    Article  Google Scholar 

  10. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  11. Kanevsky, A., Ramachandran, V.: Improved algorithms for graph four-connectivity. In: Foundations of Computer Science, 1987, 28th Annual Symposium on IEEE (1987)

    Google Scholar 

  12. Henzinger, M.R., Rao, S., Gabow, H.N.: Computing vertex connectivity: new bounds from old techniques. J. Algorithms 34(2), 222–250 (2000)

    Article  MathSciNet  Google Scholar 

  13. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J. Comput. 4(4), 507–518 (1975)

    Article  MathSciNet  Google Scholar 

  14. Esfahanian, A.H., Louis Hakimi, S.: On computing the connectivities of graphs and digraphs. Networks 14(2), 355–366 (1984)

    Article  MathSciNet  Google Scholar 

  15. White, D.R., Newman, M.: Fast approximation algorithms for finding node-independent paths in networks. Santa Fe Institute Working Papers Series. Available at SSRN: ssrn.com/abstract_id=1831790. 29 June 2001

    Google Scholar 

  16. Torrents, J., Ferraro, F.: Structural cohesion: visualization and heuristics for fast computation. J. Soc. Struct. 16(8), 1–35 (2015)

    Google Scholar 

  17. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Sci. 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  18. Erdős, P., Rényi, A.: On the strength of connectedness of a random graph. Acta Mathematica Academiae Scientiarum Hungarica 12(1–2), 261–267 (1961). https://doi.org/10.1007/BF02066689

    Article  MathSciNet  MATH  Google Scholar 

  19. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

  20. Sinkovits, R.S., Moody, J., Oztan, B.T., White, D.R.: Fast determination of structurally cohesive subgroups in large networks. J. Comput. Sci. 17, 62–72 (2016)

    Article  MathSciNet  Google Scholar 

  21. Galil, Z., Italiano, G.F.: Fully dynamic algorithms for edge connectivity problems. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing. ACM (1991)

    Google Scholar 

  22. Even, S.: An algorithm for determining whether the connectivity of a graph is at least k. SIAM J. Comput. 4(3), 393–396 (1975)

    Article  MathSciNet  Google Scholar 

  23. Moody, J., White, D.R.: Structural cohesion and embeddedness: a hierarchical concept of social groups. Am. Sociol. Rev. 68(1), 103–127 (2003)

    Article  Google Scholar 

  24. Kanevsky, A.: Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks Doug White for many useful discussions and for introducing him to the challenging problems in node connectivity and the identification of k-components in large graphs. Early stages of this work were supported in part by National Science Foundation grants OCI #0910847 Gordon: A Data Intensive Supercomputer and ACI#1053575 XSEDE: eXtreme Science and Engineering Discovery Environment (XSEDE) through the ECSS program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Sinkovits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinkovits, R.S. (2021). Fast and Accurate Determination of Graph Node Connectivity Leveraging Approximate Methods. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12742. Springer, Cham. https://doi.org/10.1007/978-3-030-77961-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77961-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77960-3

  • Online ISBN: 978-3-030-77961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics