Skip to main content

Investigating In Situ Reduction via Lagrangian Representations for Cosmology and Seismology Applications

  • 839 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12742)

Abstract

Although many types of computational simulations produce time-varying vector fields, subsequent analysis is often limited to single time slices due to excessive costs. Fortunately, a new approach using a Lagrangian representation can enable time-varying vector field analysis while mitigating these costs. With this approach, a Lagrangian representation is calculated while the simulation code is running, and the result is explored after the simulation. Importantly, the effectiveness of this approach varies based on the nature of the vector field, requiring in-depth investigation for each application area. With this study, we evaluate the effectiveness for previously unexplored cosmology and seismology applications. We do this by considering encumbrance (on the simulation) and accuracy (of the reconstructed result). To inform encumbrance, we integrated in situ infrastructure with two simulation codes, and evaluated on representative HPC environments, performing Lagrangian in situ reduction using GPUs as well as CPUs. To inform accuracy, our study conducted a statistical analysis across a range of spatiotemporal configurations as well as a qualitative evaluation. In all, we demonstrate effectiveness for both cosmology and seismology—time-varying vector fields from these domains can be reduced to less than 1% of the total data via Lagrangian representations, while maintaining accurate reconstruction and requiring under 10% of total execution time in over 80% of our experiments.

Keywords

  • Lagrangian analysis
  • In situ processing
  • Vector data

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-77961-0_36
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-77961-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Agranovsky, A., Camp, D., Garth, C., Bethel, E.W., Joy, K.I., Childs, H.: Improved post hoc flow analysis via lagrangian representations. In: 4th IEEE Symposium on Large Data Analysis and Visualization, LDAV, pp. 67–75 (2014)

    Google Scholar 

  2. Agranovsky, A., Camp, D., Joy, K.I., Childs, H.: Subsampling-based compression and flow visualization. In: Visualization and Data Analysis 2015, vol. 9397, pp. 207–220. International Society for Optics and Photonics, SPIE (2015)

    Google Scholar 

  3. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Van Andel, E.: Nyx: a massively parallel AMR code for computational cosmology. Astrophysical. J. 765(1), 39 (2013)

    CrossRef  Google Scholar 

  4. Bujack, R., Joy, K.I.: Lagrangian representations of flow fields with parameter curves. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 41–48 (2015)

    Google Scholar 

  5. Chandler, J., Bujack, R., Joy, K.I.: Analysis of error in interpolation-based pathline tracing. In: Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, pp. 1–5. Euro graphics Association (2016)

    Google Scholar 

  6. Chandler, J., Obermaier, H., Joy, K.I.: Interpolation-based pathline tracing in particle-based flow visualization. IEEE Trans. Visual. Comput. Graphics 21(1), 68–80 (2015)

    CrossRef  Google Scholar 

  7. Childs, H.: Visit: An end-user tool for visualizing and analyzing very large data (2012)

    Google Scholar 

  8. Hlawatsch, M., Sadlo, F., Weiskopf, D.: Hierarchical line integration. IEEE Trans. Visual. Comput. Graphics 17(8), 1148–1163 (2011)

    CrossRef  Google Scholar 

  9. Hummel, M., Bujack, R., Joy, K.I., Garth, C.: Error estimates for lagrangian flow field representations. In: Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, pp. 7–11. Euro graphics Association (2016)

    Google Scholar 

  10. Jakob, J., Gross, M., Günther, T.: A fluid flow data set for machine learning and its application to neural flow map interpolation. IEEE Trans. Visual. Comput. Graphics (Proc. IEEE Scientific Visualization), 27(2), 1279–1289 (2020)

    Google Scholar 

  11. Larsen, M., et al.: The alpine in situ infrastructure. In: Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, pp. 42–46. ACM (2017)

    Google Scholar 

  12. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans. Visual. Comput. Graphics 12(5), 1245–1250 (2006)

    CrossRef  Google Scholar 

  13. Lodha, S.K., Faaland, N.M., Renteria, J.C.: Topology preserving top-down compression of 2d vector fields using bintree and triangular quadtrees. IEEE Trans. Visual. Comput. Graphics 9(4), 433–442 (2003)

    CrossRef  Google Scholar 

  14. Moreland, K., et al.: Vtk-m: Accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graphics Appl. 36(3), 48–58 (2016)

    Google Scholar 

  15. Orf, L.: A violently tornadic supercell thunderstorm simulation spanning a quarter-trillion grid volumes: Computational challenges, i/o framework, and visualizations of tornadogenesis. Atmosphere 10(10), 578 (2019)

    Google Scholar 

  16. Petersson, N.A., Sjögreen, B.: Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method. J. Comput. Phys. 299, 820–841 (2015)

    MathSciNet  CrossRef  Google Scholar 

  17. Pugmire, D., et al.: Performance-Portable Particle Advection with VTK-m. In: Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2018)

    Google Scholar 

  18. Qin, X., van Sebille, E., Sen Gupta, A.: Quantification of errors induced by temporal resolution on lagrangian particles in an eddy-resolving model. Ocean Model. 76, 20–30 (2014)

    CrossRef  Google Scholar 

  19. Rapp, T., Peters, C., Dachsbacher, C.: Void-and-cluster sampling of large scattered data and trajectories. IEEE Trans. Visual. Comput. Graphics 26(1), 780–789 (2019)

    Google Scholar 

  20. Sane, S., Bujack, R., Childs, H.: Revisiting the evaluation of in situ lagrangian analysis. In: Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2018)

    Google Scholar 

  21. Sane, S., Childs, H., Bujack, R.: An interpolation scheme for VDVP lagrangian basis flows. In: Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2019)

    Google Scholar 

  22. Sane, S., et al.: Scalable in situ lagrangian flow map extraction: demonstrating the viability of a communication-free model. arXiv preprint arXiv:2004.02003 (2020)

  23. Siegfried, L., et al.: The tropical-subtropical coupling in the southeast atlantic from the perspective of the northern benguela upwelling system. PloS one 14(1), e0210083 (2019)

    Google Scholar 

  24. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board, 5.2.1 edn. (2021). https://doc.cgal.org/5.2.1/Manual/packages.html

  25. Theisel, H., Rossl, C., Seidel, H.: Combining topological simplification and topology preserving compression for 2d vector fields. In: Proceedings of 11th Pacific Conference on Computer Graphics and Applications 2003, pp. 419–423 (2003)

    Google Scholar 

  26. Tong, X., Lee, T.Y., Shen, H.W.: Salient time steps selection from large scale time-varying data sets with dynamic time warping. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 49–56. IEEE (2012)

    Google Scholar 

  27. Valdivieso Da Costa, M., Blanke, B.: Lagrangian methods for flow climatologies and trajectory error assessment. Ocean Model. 6(3), 335–358 (2004)

    Google Scholar 

  28. van Sebille, E., et al.: Lagrangian ocean analysis: fundamentals and practices. Ocean Model. 121, 49–75 (2018)

    CrossRef  Google Scholar 

  29. Vries, P., Döös, K.: Calculating lagrangian trajectories using time-dependent velocity fields. J. Atmos. Oceanic Technol. 18(6), 1092–1101 (2001)

    CrossRef  Google Scholar 

Download references

Acknowledgment

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Sane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sane, S., Johnson, C.R., Childs, H. (2021). Investigating In Situ Reduction via Lagrangian Representations for Cosmology and Seismology Applications. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12742. Springer, Cham. https://doi.org/10.1007/978-3-030-77961-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77961-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77960-3

  • Online ISBN: 978-3-030-77961-0

  • eBook Packages: Computer ScienceComputer Science (R0)