Skip to main content

Relevant Differential Topology in Statistical Manifolds

  • Conference paper
  • First Online:
Geometric Structures of Statistical Physics, Information Geometry, and Learning (SPIGL 2020)

Abstract

The author agrees and assumes that this paper is a mixture of several subjects and ongoing perspectives but he emphasizes that their unifying framework is formed of the trio described in Prologue. Statistical models form a subcategory of the category of statistical manifolds. Intuitively, think of the notion of Foliation as (geometrical or topological) study of (discrete, continuous or differentiable) partitions. The Geometry of Statistical manifolds provides a unified framework for these studies. From the conceptual point of view the statistical geometry highlights many bridges betwen the Riemannian Geometry and the Cartan geometry or gauge geometry, (which may be understood nowadays as the studies of Koszul connections). This paper is devoted to point out some relevant invariants of the differential topology which are linked with the structure of the statistical manifold. We aim to point out that a structure of statistical manifold yields many interesting dynamical systems and many relevant structured foliations, i.e. foliations whose leaves unformally carry a prescribed geometric structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amari, I.-S.: Geometrical Methods in Statistics. Lecture Notes in Statistics, vol. 28. Springer, New York (1990)

    MATH  Google Scholar 

  • Amari, I.-S., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191. AMS-OXFORD (2000)

    Google Scholar 

  • Cartan, E.: Sur les variétés à coonexions affines et la théorie de relativité généralsée. Ann. Sci. Ec. Norm. Sup. (1) 40, 325–412 (1923); (2) 40, 1–25 (1924). (3) 42, 17–88 (1925)

    Google Scholar 

  • Ghys, E.: How to construct all Riemannian foliations, in Molino’s, Riemnnian foliations, Appendix

    Google Scholar 

  • Gromov, M.: The search of structures: (i) ECM6, KRAKOW 2012, (ii) MaxEnt 2014. Proc. Amer Soc Phys (2013)

    Google Scholar 

  • Guillemin, V.: The integrability problem for G-structures. Trans. Am. Math. Soc. 116, 544–560 (1965)

    MathSciNet  MATH  Google Scholar 

  • Guillemin, V., Sternberg, S.: An algebraic model for transitive differential geometry. Bull. Am. Math. Soc. 70, 16–47 (1964)

    Article  MathSciNet  Google Scholar 

  • Hochschild, G., Serre, J.P.: Cohomology of group extensions. Trans. Amer Math Soc. 74(1), 110–134 (1953)

    Google Scholar 

  • Kobayashi, S.: The theory of connections. Annali di Matematica 43, 119–194 (1957)

    Article  MathSciNet  Google Scholar 

  • Singer, I., Sternberg, S.: The infinte groups of Lie and Cartan. J. Analyse Math. 15, 114 (1965)

    Article  Google Scholar 

  • Koszul, J.-L.: Sur les deformations des varietes localement plates

    Google Scholar 

  • Sur l’homologie des formes diff?rentielles d’ordre superieur

    Google Scholar 

  • Lichnerowicz, Theorie globale des connexions et des groupes d’holonomie. Edizioni Cremonese (1962)

    Google Scholar 

  • Lyndon, R.C.: The conhomology of group extensions. Duke Math. J. 15(1), 271–292 (1948)

    Google Scholar 

  • MacCullagh, P.: What is a statistical model. Ann. Stat. 30(5), 1225–1310 (2002)

    MathSciNet  Google Scholar 

  • Moerdijk, I., Mrcun, J.: Introduction to Foliations and Lie groupoids. Cambridge Studies in Advanced Mathematics, vol. 91 (2003)

    Google Scholar 

  • Molino, P.: Riemannian Foliations. Birkhauser, Boston (1988)

    Book  Google Scholar 

  • Murray, M.K., Rice, J.W.: Differential Geometry and Statistics. Monographs on Statistics and Applied Probability, vol. 48. Chapman-Hall CRC, London (1993)

    Google Scholar 

  • Nguiffo Boyom, M.: Foliation-web-heessian geometry-information geometry-enropy and cohomology. Entropy 18(12), 433 (2016)

    Google Scholar 

  • Nguiffo Boyom, M.: The last formula of Koszul. J. Inf. Geom. (2019). https://doi.org/10.10071-48

    Google Scholar 

  • Nguiffo Boyom, M.: New Invariants and Old open Problems in the quantitative Global Analysis (preprint)

    Google Scholar 

  • Palais, R.: A global formulation of the lie theory of transformation groups. Mem. Am. Math. Soc. 22 (1957)

    Google Scholar 

  • Palais, R.S., Stewart, T.E.: Torus bandle over torus. Proc. Am. Math. Soc. 12, 26–40 (1961)

    Article  Google Scholar 

  • Reihnardt, B.L.: Foliated manifolds with bundlelike metrics. Ann. Math. 69(2), 119–1329 (1959)

    Google Scholar 

  • Shima, H.: The Differential Geometry of Hessian Manifolds. World Scientific Publishing, Hackensack (2007)

    MATH  Google Scholar 

  • Wolf, J.: Spaces of Constant Curvature. Publish of Perish, Boston (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Nguiffo-Boyom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguiffo-Boyom, M. (2021). Relevant Differential Topology in Statistical Manifolds. In: Barbaresco, F., Nielsen, F. (eds) Geometric Structures of Statistical Physics, Information Geometry, and Learning. SPIGL 2020. Springer Proceedings in Mathematics & Statistics, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-77957-3_9

Download citation

Publish with us

Policies and ethics