Skip to main content

Information Geometry and Integrable Hamiltonian Systems

  • Conference paper
  • First Online:
Geometric Structures of Statistical Physics, Information Geometry, and Learning (SPIGL 2020)

Abstract

We consider the integrable Hamiltonian System of the Peakons-Anti Peakons associated with the Camassa-Holm equation. Following previous contributions of Nakamura for the Toda Lattice, we discuss its link with the Geometry of Information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.I.: Information geometry and its applications. Applied Mathematical Sciences, vol. 194. Springer, Japan (2016). https://doi.org/10.1007/978-4-431-55978-8

  2. Ay, N., Jost, J., Lê, H., Schwachhofer, L.: Information geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. A Series of Modern Surveys in Mathematics, vol. 64. Springer, Cham (2017)

    Google Scholar 

  3. Amari, S., Nagaoka, H.: Methods of information geometry. Translated from the 1993 Japanese original by Daishi Harada. Translations of Mathematical Monographs, vol. 191, x+206 pp. American Mathematical Society, Providence, RI; Oxford University Press, Oxford (2000)

    Google Scholar 

  4. Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154(2), 229–257 (2000)

    Google Scholar 

  5. Beals, R., Sattinger, D.H., Szmigielski, J.: Peakons strings, and the finite Toda lattice. Comm. Pure Appl. Math. 54(1), 91–106 (2001)

    Article  MathSciNet  Google Scholar 

  6. Beals, R., Sattinger, D.H., Szmigielski, J.: Periodic peakons and Calogero-Françoise flows. J. Inst. Math. Jussieu 4(1), 1–27 (2005)

    Article  MathSciNet  Google Scholar 

  7. Beals, R., Sattinger, D.H., Szmigielski, J.: The string density problem and the Camassa-Holm equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365(1858), 2299–2312 (2007)

    Google Scholar 

  8. Bloch, A.M., Brockett, R.W., Ratiu, T.S.: Completely integrable gradient flows. Comm. Math. Phys. 147(1), 57–74 (1992)

    Google Scholar 

  9. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1660–1664 (1993)

    Article  MathSciNet  Google Scholar 

  10. Chentsov, N.: Category of mathematical statistics. Dokl. Akad. Nauk SSSR 164, 511–514 (1965)

    Google Scholar 

  11. Morse, N., Sacksteder, R.: Statistical isomorphism. Ann. Math. Stat. 37, 203–214 (1966)

    Google Scholar 

  12. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential – an integrable system. In: Moser J. (eds.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38. Springer, Berlin, Heidelberg (1975). https://doi.org/10.1007/3-540-07171-7_12

  13. Nakamura, Y.: A tau-function for the finite Toda molecule, and information spaces. Symplectic Geometry and Quantization (Sanda and Yokohama, 1993), vol. 179, pp. 205–211. Contemporary Mathematics, American Mathematical Society, Providence, RI (1994)

    Google Scholar 

  14. Nakamura, Y.: Neurodynamics and nonlinear integrable systems of Lax type. Japan J. Indust. Appl. Math. 11(1), 11–20 (1994)

    Article  MathSciNet  Google Scholar 

  15. Nakamura, Y., Kodama, Y.: Moment problem of Hamburger, hierarchies of integrable systems, and the positivity of tau-functions. KdV ’95 (Amsterdam, 1995). Acta Appl. Math. 39(1–3), 435–443 (1995)

    Google Scholar 

  16. Shima, H.: The Geometry of Hessian Structures. World Scientific Publishing, Singapore (2007)

    Google Scholar 

  17. Stieltjes, T.-J.: Sur la réduction en fraction continue d’une série procédant suivant les puissances descendantes d’une variable. (French) [Reduction to a continued fraction of a series in descending powers of a variable] Reprint of the 1889 original. Ann. Fac. Sci. Toulouse Math. 5(6)(1), H1–H17 (1996)

    Google Scholar 

  18. Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), vol. 81, pp. 259–271. North-Holland Mathematics StudiesLecture Notes in Numerical and Applied Analysis 5, North-Holland, Amsterdam (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Françoise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Françoise, JP. (2021). Information Geometry and Integrable Hamiltonian Systems. In: Barbaresco, F., Nielsen, F. (eds) Geometric Structures of Statistical Physics, Information Geometry, and Learning. SPIGL 2020. Springer Proceedings in Mathematics & Statistics, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-77957-3_8

Download citation

Publish with us

Policies and ethics