Skip to main content

Souriau-Casimir Lie Groups Thermodynamics and Machine Learning

  • Conference paper
  • First Online:
Geometric Structures of Statistical Physics, Information Geometry, and Learning (SPIGL 2020)

Abstract

In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in the framework of Symplectic model of Statistical Mechanics. This Souriau’s model considers the statistical mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic manifold by a Lagrange 2-form, and defines in case of non-null cohomology (non equivariance of the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density (of maximum Entropy) that is covariant under the action of dynamic groups of physics (eg., Galileo’s group in classical physics). Souriau method could then be applied on Lie Groups to define a covariant maximum Entropy density by Kirillov representation theory. Based on this model, we will introduce a geometric characterization of Entropy as a generalized Casimir invariant function in coadjoint representation, and Massieu characteristic function, dual of Entropy by Legendre transform, as a generalized Casimir invariant function in adjoint representation, where Souriau cocycle is a measure of the lack of equivariance of the moment mapping. The dual space of the Lie algebra foliates into coadjoint orbits that are also the level sets on the Entropy. The information manifold foliates into level sets of the Entropy that could be interpreted in the framework of Thermodynamics by the fact that motion remaining on this complex surfaces is non-dissipative, whereas motion transversal to these surfaces is dissipative. We will explain the 2nd Principle in thermodynamics by definite positiveness of Souriau tensor extending the (Koszul-)Fisher metric from Information Geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casimir, H.G.B.: Uber die konstruktion einer zu den irreduziblen darstellungen halbeinfacher kontinuierlicher gruppen gehörigen differentialgleichung. Proc. R. Soc. Amsterdam 34(844–846), 4 (1931)

    MATH  Google Scholar 

  2. Souriau, J.-M.: Structure des systèmes dynamiques, Dunod (1969)

    Google Scholar 

  3. Souriau, J.-M.: Structure of dynamical systems: a symplectic view of physics, the Progress in Mathematics book series PM, vol. 149. Springer (1997)

    Google Scholar 

  4. Souriau, J.-M.: Mécanique statistique, groupes de Lie et cosmologie. Colloque International du CNRS. Géométrie symplectique et physique Mathématique, Aix-en-Provence 1974. CNRS (1976

    Google Scholar 

  5. Souriau, J.-M.: Géométrie Symplectique et Physique Mathématique, Deux Conférences de Jean-Marie Souriau, Colloquium do la Société Mathématique de France, Paris, Ile-de-France, 19 Février 1975–12 Novembre 1975

    Google Scholar 

  6. Souriau, J.-M.: Mécanique Classique et Géométrie Symplectique, CNRS-CPT-84/PE.1695, Novembre 1984

    Google Scholar 

  7. Kirillov, A.A.: Elements of the Theory of Representations, vol. 220. Springer Science and Business Media LLC, Berlin/Heidelberg, Germany (1976)

    Google Scholar 

  8. Guichardet, A.: La methode des orbites: Historiques, principes, résultats. In Leçons de Mathématiques d’Aujourd’hui, vol. 4, pp. 33–59. Cassini, Paris, France (2010)

    Google Scholar 

  9. Vergne, M.: Representations of lie groups and the orbit method. In: Srinivasan, B., Sally, J.D. (eds.) Emmy Noether in Bryn Mawr, pp. 33–59. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-5547-5_5

  10. Rais, M.L.: Représentation coadjointe du groupe affine. Ann. Inst. Fourier 28, 207–237 (1978)

    Article  MathSciNet  Google Scholar 

  11. Berzin, D.V.: Invariants of the co-adjoint representation for Lie algebras of a special form. Russ. Math. Surv. 51, 137–139 (1996)

    Article  Google Scholar 

  12. Barbaresco, F.: Lie group statistics and lie group machine learning based on Souriau Lie groups thermodynamics & Koszul-Souriau-fisher metric: new entropy definition as generalized casimir invariant function in coadjoint representation. Entropy 22, 642 (2020)

    Article  MathSciNet  Google Scholar 

  13. Barbaresco, F., Gay-Balmaz, F.: Lie group cohomology and (multi)symplectic integrators: new geometric tools for Lie group machine learning based on Souriau geometric statistical mechanics. Entropy 22, 498 (2020)

    Article  MathSciNet  Google Scholar 

  14. Barbaresco, F. : Lie Groups Thermodynamics & Souriau-Fisher Metric. In: SOURIAU 2019 Conference, Institut Henri Poincaré, 31st May 2019

    Google Scholar 

  15. Barbaresco, F.: Souriau-Casimir Lie groups thermodynamics & machine learning. In: SPIGL 2020 Proceedings, Les Houches Summer Week on Joint Structures and Common Foundations of Statistical Physics, Information Geometry and Inference for Learning, Springer Proceedings in Mathematics & Statistics (2021)

    Google Scholar 

  16. Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. Reidel, Kufstein (1987)

    Book  Google Scholar 

  17. Marle, C.M.: Géométrie Symplectique et Géométrie de Poisson. Calvage & Mounet, Paris (2018)

    Google Scholar 

  18. Marle, C.-M.: From tools in symplectic and poisson geometry to J.-M. Souriau’s theories of statistical mechanics and thermodynamics. Entropy, 18, 370 (2016). https://doi.org/10.3390/e18100370

  19. Marle, C.-M.: Projection Stéréographique et Moments, Hal-02157930, Version 1; June 2019. https://hal.archives-ouvertes.fr/hal-02157930/. Accessed 31 May 2020

  20. Marle, C.-M.: On generalized Gibbs states of mechanical systems with symmetries, Preprint, October 2020

    Google Scholar 

  21. Koszul, J.-L., Zou, Y.M.: Introduction to Symplectic Geometry. Springer Science and Business Media LLC, Heidelberg (2019). https://doi.org/10.1007/978-981-13-3987-5

  22. De Saxcé, G., Marle, C-M.: Présentation du livre de Jean-Marie Souriau “Structure des systèmes dynamiques, preprint, April 2020

    Google Scholar 

  23. De. Saxcé, G., Vallée, C.: Galilean Mechanics and Thermodynamics of Continua. Wiley, Hoboken (2016)

    Book  Google Scholar 

  24. De. Saxcé, G.: Link between Lie group statistical mechanics and thermodynamics of continua. Entropy 18, 254 (2016)

    Article  MathSciNet  Google Scholar 

  25. Saxcé, G.: Euler-poincaré equation for lie groups with non null symplectic cohomology. Application to the mechanics. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 11712, pp. 66–74. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26980-7_8

    Chapter  Google Scholar 

  26. Cartier, P.: Some Fundamental Techniques in the Theory of Integrable Systems, IHES/M/94/23, SW9421 (1994). https://cds.cern.ch/record/263222/files/P00023319.pdf. Accessed 31 May 2020

  27. Dacunha-Castelle, D., Gamboa, F.: Maximum d’entropie et problème des moments Annales de l’I.H.P., section B, tome 26, no. 4, pp. 567–596 (1990)

    Google Scholar 

  28. Balian, R., Alhassid, Y., Reinhardt, H.: Dissipation in many-body systems: a geometric approach based on information theory. Phys. Rep. 131, 1–146 (1986)

    Article  MathSciNet  Google Scholar 

  29. Nencka, H., Streater, R.F.: Information geometry for some Lie algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2, 441–460 (1999)

    Google Scholar 

  30. Shirokov, I.V.: Differential invariants of the transformation group of a homogeneous space. Sib. Math. J. 48, 1127–1140 (2007)

    Article  MathSciNet  Google Scholar 

  31. Shirokov, I.V.: Darboux coordinates on K-orbits and the spectra of Casimir operators on lie groups. Theor. Math. Phys. 123, 754–767 (2000)

    Article  MathSciNet  Google Scholar 

  32. Kurnyavko, O.L., Shirokov, I.V.: Algebraic method for construction of infinitesimal invariants of Lie groups representations. arXiv:1710.07977v1 [math.RT], 9 May 2019

  33. Mikheyev, V.V., Shirokov, I.V.: Application of coadjoint orbits in the thermodynamics of non-compact manifolds. Electron. J. Theor. Phys. 2, 1–10 (2005)

    Google Scholar 

  34. Mikheev, V.: Method of orbits of co-associated representation in thermodynamics of the Lie non-compact groups. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol. 10589, pp. 425–431. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68445-1_50

    Chapter  MATH  Google Scholar 

  35. Schmidt, J.R.: The Darboux coordinate system and Holstein-Primakoff representations on Kahler manifolds. Canad. J. Phys. 84(10), 891 (2006)

    Google Scholar 

  36. Barbaresco, F.: Souriau Entropy based on Symplectic Model of Statistical Physics: three Jean-Marie Souriau’s seminal papers on Lie Groups Thermodynamics, Encyclopedia of Entropy Across the Disciplines, World Scientific (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Barbaresco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbaresco, F. (2021). Souriau-Casimir Lie Groups Thermodynamics and Machine Learning. In: Barbaresco, F., Nielsen, F. (eds) Geometric Structures of Statistical Physics, Information Geometry, and Learning. SPIGL 2020. Springer Proceedings in Mathematics & Statistics, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-77957-3_3

Download citation

Publish with us

Policies and ethics