Skip to main content

Dirac Structures and Variational Formulation of Thermodynamics for Open Systems

  • Conference paper
  • First Online:
Geometric Structures of Statistical Physics, Information Geometry, and Learning (SPIGL 2020)

Abstract

In this paper, we make a review of our recent development of Dirac structures and the associated variational formulation for nonequilibrium thermodynamics (see, [15, 16]). We specifically focus on the case of simple and open systems, in which the thermodynamic state is represented by one single entropy and the transfer of matter and heat with the exterior is included. We clarify the geometric structure by introducing an induced Dirac structure on the covariant Pontryagin bundle and then develop the associated dynamical system (the port-Dirac systems) in the context of time-dependent nonholonomic systems with nonlinear constraints of thermodynamic type. We also present the variational structure associated with the Dirac formulation in the context of the generalized Lagrange-d’Alembert-Pontryagin principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics, vol. 24. Springer, New York (2003). With the collaboration of J. Baillieul, P. Crouch and J. Marsden, and with scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov

    Google Scholar 

  2. Cendra, H., Ibort, A., de León, M., de Diego, D.: A generalization of Chetaev’s principle for a class of higher order nonholonomic constraints. J. Math. Phys. 45, 2785 (2004)

    Google Scholar 

  3. Courant, T.J.: Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990)

    Google Scholar 

  4. Courant, T., Weinstein, A.: Beyond poisson structures. In: Actions Hamiltoniennes de Groupes. Troisième Théorème de Lie (Lyon, 1986), vol. 27, pp. 39–49. Hermann, Paris (1988)

    Google Scholar 

  5. de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. North-Holland, Amsterdam (1969)

    Google Scholar 

  6. Eldred, C., Gay-Balmaz, F.: Single and double generator bracket formulations of multicomponent fluids with irreversible processes. J. Phys. A: Math. Theor. 53, 395701 (2020)

    Google Scholar 

  7. Eldred, C., Gay-Balmaz, F.: Thermodynamically consistent semi-compressible fluids: a variational perspective, arXiv:2102.08293v1 (2021)

  8. Ferrari, C., Gruber, C.: Friction force: from mechanics to thermodynamics. Eur. J. Phys. 31(5), 1159–1175 (2010)

    Article  Google Scholar 

  9. Gay-Balmaz, F.: A variational derivation of the nonequilibrium thermodynamics of a moist atmosphere with rain process and its pseudoincompressible approximation. Geophys. Astrophysical Fluid Dynamics 113(5–6), 428–465 (2019)

    Google Scholar 

  10. Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: discrete systems. J. Geom. Phys. 111, 169–193 (2017)

    Google Scholar 

  11. Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: continuum systems. J. Geom. Phys. 111, 194–212 (2017)

    Google Scholar 

  12. Gay-Balmaz, F., Yoshimura, H.: A variational formulation of nonequilibrium thermodynamics for discrete open systems with mass and heat transfer. Entropy 163, 1–26 (2018). https://doi.org/10.3390/e20030163

    Article  MathSciNet  Google Scholar 

  13. Gay-Balmaz, F., Yoshimura, H.: Dirac structures in nonequilibrium thermodynamics. J. Math. Phys. 59, 012701-29 (2018)

    Google Scholar 

  14. Gay-Balmaz, F., Yoshimura, H.: From Lagrangian mechanics to nonequilibrium thermodynamics: a variational perspective. Entropy 21(1), 8 (2019). https://doi.org/10.3390/e21010008

  15. Gay-Balmaz, F., Yoshimura, H.: Dirac structures in nonequilibrium thermodynamics for simple open systems. J. Math. Phys. 61, 09270 (2020). https://doi.org/10.1063/1.5120390

  16. Gay-Balmaz, F., Yoshimura, H.: Dirac structures and variational structures of port-Dirac systems in nonequilibrium thermodynamics. IMA J. Math. Control. Inf. 37(4), 1298–1347 (2020). https://doi.org/10.1093/imamci/dnaa015

    Article  MATH  Google Scholar 

  17. Gay-Balmaz, F., Yoshimura, H.: From variational to bracket formulations in nonequilibrium thermodynamics of simple systems. J. Phys. Geom. (2020, in press)

    Google Scholar 

  18. Gotay, M., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum maps and classical relativistic fields, Part I: Covariant field theory (66 pages). arXiv:physics/9801019v2 (1997)

  19. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. London Ser. Math. Phys. Eng. Sci. 432(1885), 171–194 (1991)

    Google Scholar 

  20. Gruber, C.: Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston. Eur. J. Phys. 20, 259–266 (1999)

    Google Scholar 

  21. Gruber, C., Bréchet, S.D.: Lagrange equation coupled to a thermal equation: mechanics as a consequence of thermodynamics. Entropy 13, 367–378 (2011)

    Article  MathSciNet  Google Scholar 

  22. Klein, S., Nellis, G.: Thermodynamics. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  23. Kondepudi, D., Prigogine, I.: Modern Thermodynamics. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  24. Lanczos, C.: Variational Principles of Mechanics, 4th edn. Dover (1970)

    Google Scholar 

  25. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, Heidelberg (1999)

    Book  Google Scholar 

  26. Stueckelberg, E.C.G., Scheurer, P.B.: Thermocinétique Phénoménologique Galiléenne. Birkhäuser (1974)

    Google Scholar 

  27. Vankerschaver, J., Yoshimura, H., Leok, M.: The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories. J. Math. Phys. 53, 072903-1–072903-25 (2012)

    Google Scholar 

  28. Yoshimura, H., Marsden, J.E.: Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. J. Geom. and Phys. 57, 133–156 (2006)

    Google Scholar 

  29. Yoshimura, H., Marsden, J.E.: Dirac structures in Lagrangian mechanics Part II: Variational structures. J. Geom. and Phys. 57, 209–250 (2006)

    Google Scholar 

Download references

Acknowledgements

H.Y. is partially supported by JSPS Grant-in-Aid for Scientific Research (17H01097), JST CREST Grant Number JPMJCR1914, the MEXT Top Global University Project, Waseda University (SR 2020C-194) and the Organization for University Research Initiatives (Evolution and application of energy conversion theory in collaboration with modern mathematics). F.G.B. is partially supported by the ANR project GEOMFLUID, ANR-14-CE23-0002-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshimura, H., Gay-Balmaz, F. (2021). Dirac Structures and Variational Formulation of Thermodynamics for Open Systems. In: Barbaresco, F., Nielsen, F. (eds) Geometric Structures of Statistical Physics, Information Geometry, and Learning. SPIGL 2020. Springer Proceedings in Mathematics & Statistics, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-77957-3_12

Download citation

Publish with us

Policies and ethics