Abstract
Over the development of modern cryptography, often, alternative cryptographic schemes are developed to achieve goals that in some important respect are orthogonal. Thus, we have to choose either a scheme which achieves the first goal and not the second, or vice versa. This results in two types of schemes that compete with each other. In the basic area of user privacy, specifically in anonymous (multi-use credentials) signing, such an orthogonality exists between anonymity and accountability.
The conceptual contribution of this work is to reverse the above orthogonality by design, which essentially typifies the last 25 years or so, and to suggest an alternative methodology where the opposed properties are carefully folded into a single scheme. The schemes will support both opposing properties simultaneously in a bifurcated fashion, where:
-
First, based on rich semantics expressed over the message’s context and content, the user, etc., the relevant property is applied point-wise per message operation depending on a predicate; and
-
Secondly, at the same time, the schemes provide what we call “branch-hiding;” namely, the resulting calculated value hides from outsiders which property has actually been locally applied.
Specifically, we precisely define and give the first construction and security proof of a “Bifurcated Anonymous Signature” (BiAS): A scheme which supports either absolute anonymity or anonymity with accountability, based on a specific contextual predicate, while being branch-hiding. This novel signing scheme has numerous applications not easily implementable or not considered before, especially because: (i) the conditional traceability does not rely on a trusted authority as it is (non-interactively) encapsulated into signatures; and (ii) signers know the predicate value and can make a conscious choice at each signing time.
Technically, we realize BiAS from homomorphic commitments for a general family of predicates that can be represented by bounded-depth circuits. Our construction is generic and can be instantiated in the standard model from lattices and, more efficiently, from bilinear maps. In particular, the signature length is independent of the circuit size when we use commitments with suitable efficiency properties.
Keywords
- New primitive
- Privacy
- Anonymity
- Accountability
- Group signatures
- Conditional traceability
- Predicate-based privacy
This is a preview of subscription content, access via your institution.
Buying options




Notes
- 1.
As pointed out in [27, Remark 3.3], it is straightforward to build an HEC without the context-hiding and efficient verification properties, using any statistically hiding commitment.
- 2.
A context-hiding construction can still improve the efficiency by outputting partial openings in the clear in each signature.
- 3.
It is possible to compute \(\mathsf {ct}_\mathsf {id}\) using an ordinary (i.e., non-lossy) PKE scheme but it requires to rely on the simulation-soundness of \(\mathsf {NIZK}\) in the proof of Lemma 4.
References
Ajtai, M.: Generating hard instances of lattice problems. In: STOC (1996)
Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for the controlled release of certified data. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer, Heidelberg (2006). https://doi.org/10.1007/11861386_4
Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_30
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38
Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11
Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. J. Cryptol. 22(1), 114–138 (2009)
Blum, M., Feldman, M., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC (1988)
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13
Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_7
Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 210–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_12
Boyen, X., Delerablée, C.: Expressive subgroup signatures. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 185–200. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_13
Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29
Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_7
Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18
Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using e-cash (extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_10
Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019)
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad-hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36
Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_13
Garms, L., Lehmann, A.: Group signatures with selective linkability. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 190–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_7
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC (2015)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24
Hofheinz, D., Ursu, B.: Dual-mode NIZKs from obfuscation. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 311–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_12
Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Exploring constructions of compact NIZKs from various assumptions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 639–669. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_21
Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_34
Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. Int. J. Secur. Netw. 1(1), 24–45 (2006)
Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055727
Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_30
Kohlweiss, M., Miers, I.: Accountable tracing signatures. IACR Cryptology ePrint Archive, 2014:824 (2014)
Kohlweiss, M., Miers, I.: Accountable metadata-hiding escrow: a group signature case study. In: PoPETs (2015)
Libert, B., Nguyen, K., Passelègue, A., Titiu, R.: Simulation-sound arguments for LWE and applications to KDM-CCA2 security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 128–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_5
Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_5
Liu, J., Wei, V., Wong, D.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28
Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35
Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_24
Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_31
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC (1990)
Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
Peikert, C., Shiehian, S.: Non-interactive zero knowledge for NP from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4
Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_35
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005)
Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group signatures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_18
Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication (extended abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_22
Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS 2004. IIFIP, vol. 153, pp. 271–286. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8147-2_18
Yang, R., Au, M.-H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based zero-knowledge arguments with standard soundness: construction and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_6
Acknowledgements
Part of this research was funded by the French ANR ALAMBIC project (ANR-16-CE39-0006). This work was also supported in part by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). Khoa Nguyen was supported in part by the Gopalakrishnan - NTU PPF 2018, by A*STAR, Singapore under research grant SERC A19E3b0099, and by Vietnam National University HoChiMinh City (VNU-HCM) under grant number NCM2019-18-01. Thomas Peters is a research associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Libert, B., Nguyen, K., Peters, T., Yung, M. (2021). Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma into a Single Private Signing Scheme. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12698. Springer, Cham. https://doi.org/10.1007/978-3-030-77883-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-77883-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77882-8
Online ISBN: 978-3-030-77883-5
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
https://iacr.org/