Skip to main content

The History of the DReaM Group

  • 121 Accesses

Abstract

I describe the history of the DReaM Group (Discovery and Reasoning in Mathematics), which I created after my arrival at the University of Edinburgh in 1971. The group has been characterised by its diversity of approaches to the representation of and reasoning with knowledge, including: deduction; meta-level reasoning; learning, especially of new reasoning methods; representation creation and change; as well as applications to problems as diverse as formal verification, analogical blending and computational creativity. From 1982, we have been supported first by a series of EPSRC rolling grants and then, when this funding mechanism ceased, platform grants. Now that the latter mechanism has also ceased, we felt it was time to take stock, celebrate our achievements, assess our strengths and plan our future research. This history lays the bedrock for that self-analysis. Inevitably, space restrictions have forced me to be highly selective in what research I cover. I apologise to those whose excellent research I have had to omit or only hint at. My selection has been mainly influenced by my desire to illustrate our methodological and application diversity. I hope that the other chapters in this book will fill some of those gaps.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-77879-8_1
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-77879-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3

Notes

  1. 1.

    “2” because it was a second year course.

  2. 2.

    Later to become SERC and then EPSRC.

  3. 3.

    Now Palmer.

  4. 4.

    AKA—the Mathematical Reasoning Group.

  5. 5.

    Climbing the highest peaks in each of seven continents.

  6. 6.

    https://en.wikipedia.org/wiki/Alvey. Accessed 26.8.19.

  7. 7.

    https://en.wikipedia.org/wiki/Fifth_generation_computer. Accessed 26.8.19.

  8. 8.

    http://dream.inf.ed.ac.uk/events/CIAO/.

  9. 9.

    Recall that we are reasoning backwards from the goal.

  10. 10.

    The metaphor is of ripples on a pond. Initially, they obscure the reflection of the surrounding countryside, but as the ripples move out, the reflection is restored.

  11. 11.

    These axioms follow Peano’s spirit but have been modified according to modern practice.

  12. 12.

    If you are concerned with the direction of the rewrite arrow, recall that we are reasoning backwards, so the direction of implication is right to left.

  13. 13.

    Pronounced “new \(\mathbb {T}\)”.

  14. 14.

    https://cryptosense.com/.

  15. 15.

    https://www.ed.ac.uk/cyber-security-privacy.

  16. 16.

    theorymine.co.uk.

  17. 17.

    https://en.wikipedia.org/wiki/Limit_(category_theory) accessed 15.7.19.

References

  1. Baker, S.: A new application for explanation-based generalisation within automated reasoning. In: A. Bundy (ed.) 12th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence, Vol. 814, pp. 177–191. Springer-Verlag, Nancy, France (1994)

    Google Scholar 

  2. Baker, S., Ireland, A., Smaill, A.: On the use of the constructive omega rule within automated deduction. In: A. Voronkov (ed.) International Conference on Logic Programming and Automated Reasoning — LPAR 92, St. Petersburg, Lecture Notes in Artificial Intelligence No. 624, pp. 214–225. Springer-Verlag (1992)

    Google Scholar 

  3. Basin, D.A., Walsh, T.: Difference unification. In: R. Bajcsy (ed.) Proc. 13th Intern. Joint Conference on Artificial Intelligence (IJCAI ’93), vol. 1, pp. 116–122. Morgan Kaufmann, San Mateo, CA (1993). Also available as Technical Report MPI-I-92-247, Max-Planck-Institut für Informatik

    Google Scholar 

  4. Besold, T.R., Schorlemmer, M., Smaill, A. (eds.): Computational Creativity Research: Towards Creative Machines, Atlantis Thinking Machines, vol. 7. Atlantis Press (2015)

    Google Scholar 

  5. Bou, F., Schorlemmer, M., Corneli, J., Gomez-Ramirez, D., Maclean, E., Smaill, A., Pease, A.: The role of blending in mathematical invention. In: Proceedings of the sixth international conference of computational creativity (2015)

    Google Scholar 

  6. Boyer, R.S., Moore, J.S.: Proving theorems about LISP functions. In: N. Nilsson (ed.) Proceedings of the Third IJCAI, pp. 486–493. International Joint Conference on Artificial Intelligence (1973). Also available from Edinburgh as DCL memo No. 60

    Google Scholar 

  7. Bundy, A.: Incidence calculus: A mechanism for probabilistic reasoning. Journal of Automated Reasoning 1(3), 263–284 (1985)

    MathSciNet  CrossRef  Google Scholar 

  8. Bundy, A.: A Science of Reasoning, pp. 178–198. MIT Press (1991)

    Google Scholar 

  9. Bundy, A.: Cooperating reasoning processes: more than just the sum of their parts. In: M. Veloso (ed.) Proceedings of IJCAI 2007, pp. 2–11. IJCAI Inc (2007). Acceptance speech for Research Excellence Award.

    Google Scholar 

  10. Bundy, A.: European collaboration on automated reasoning. AI Communications 27(1), 25–35 (2013). https://doi.org/10.3233/AIC-130584.

    MathSciNet  CrossRef  Google Scholar 

  11. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for Mathematical Reasoning, Cambridge Tracts in Theoretical Computer Science, vol. 56. Cambridge University Press (2005)

    Google Scholar 

  12. Bundy, A., Byrd, L., Luger, G., Mellish, C., Milne, R., Palmer, M.: Solving mechanics problems using meta-level inference. In: B.G. Buchanan (ed.) Proceedings of IJCAI-79, pp. 1017–1027. International Joint Conference on Artificial Intelligence (1979)

    Google Scholar 

  13. Bundy, A., Cavallo, F., Dixon, L., Johansson, M., McCasland, R.L.: The theory behind TheoryMine. In: Automatheo. FLoC (2010)

    Google Scholar 

  14. Bundy, A., van Harmelen, F., Horn, C., Smaill., A.: The Oyster-Clam system. 10th International Conference on Automated Deduction (1990)

    Google Scholar 

  15. Bundy, A., McCasland, R., Smith, P.: Mathsaid: Automated mathematical theory exploration. Applied Intelligence 47(3), 585–606 (2017). https://doi.org/10.1007/s10489-017-0954-8

    CrossRef  Google Scholar 

  16. Bundy, A., Nuamah, K., Lucas, C.: Automated reasoning in the age of the internet. In: 13th International Conference on Artificial Intelligence and Symbolic Computation, vol. LNAI 11110, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99957-9_1. Invited Talk

  17. Cantu, F., Bundy, A., Smaill, A., Basin, D.: Experiments in automating hardware verification using inductive proof planning. In: M. Srivas, A. Camilleri (eds.) Proceedings of the Formal Methods for Computer-Aided Design Conference, no. 1166 in Lecture Notes in Computer Science, pp. 94–108. Springer-Verlag (1996)

    Google Scholar 

  18. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Surveys in Computer Science. Springer-Verlag, Berlin (1990)

    Google Scholar 

  19. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer Verlag (1984)

    Google Scholar 

  20. Colton, S.: Automated conjecture making in number theory using HR, Otter and Maple. Journal of Symbolic Computation 39, 593–615 (2005)

    MathSciNet  CrossRef  Google Scholar 

  21. Colton, S., Bundy, A., Walsh, T.: HR: Automatic concept formation in pure mathematics. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp. 786–791 (1999)

    Google Scholar 

  22. Colton, S., Bundy, A., Walsh, T.: Automatic invention of integer sequences. In: Proceedings of the 17th National Conference on Artificial Intelligence, Austin, Texas, USA, pp. 558–563 (2000)

    Google Scholar 

  23. Colton, S., Bundy, A., Walsh, T.: On the notion of interestingness in automated mathematical discovery. International Journal of Human Computer Studies 53(3), 351–375 (2000)

    CrossRef  Google Scholar 

  24. Colton, S., Gow, J., Torres, P., Cairns, P.: Experiments in objet trouve browsing. In: Proceedings of the 1st International Conference on Computational Creativity (2010)

    Google Scholar 

  25. Colton, S., Pease, A.: The TM system for repairing non-theorems. In: W. Ahrendt, P. Baumgartner, H. de Nivelle, S. Ranise, C. Tinelli (eds.) Selected papers from the IJCAR’04 disproving workshop, Electronic Notes in Theoretical Computer Science, vol. 125 (3), pp. 87–101 (2004)

    Google Scholar 

  26. Cox, P.T., Pietrzykowski, T.: Causes for events: Their computation and applications. In: J. Siekmann (ed.) Lecture Notes in Computer Science: Proceedings of the 8th International Conference on Automated Deduction, pp. 608–621. Springer-Verlag (1986)

    Google Scholar 

  27. Cresswell, S., Smaill, A., Richardson, J.D.C.: Deductive synthesis of recursive plans in linear logic. In: Proceedings of the 5th European Conference on Planning, Durham, UK, LNAI, vol. 1809. Springer Verlag (1999)

    Google Scholar 

  28. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree. Electronic Notes in Theoretical Computer Science 155, 341–359 (2006)

    CrossRef  Google Scholar 

  29. Dennis, L.A., Jamnik, M., Pollet, M.: On the comparison of proof planning systems: Lambda-Clam, Omega and IsaPlanner. In: Proceedings of 12th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus 2005), Electronic Notes in Computer Science (ENTCS) (2005). Available from http://www.cs.nott.ac.uk/~lad/work/publications.html

  30. Dixon, L., Fleuriot, J.D.: IsaPlanner: A prototype proof planner in Isabelle. In: Proceedings of CADE’03, LNCS, vol. 2741, pp. 279–283 (2003)

    Google Scholar 

  31. Duncan, H., Bundy, A., Levine, J., Storkey, A., Pollet, M.: The use of data-mining for the automatic formation of tactics. In: Workshop on Computer-Supported Mathematical Theory Development. IJCAR-04 (2004)

    Google Scholar 

  32. Eppe, M., Confalonieri, R., Maclean, E., Kaliakatsos, M., Cambouropoulos, E., Codescu, M., Schorlemmer, M., Kühnberger, K.: Computational invention of cadences and chord progressions by conceptual chord-blending. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  33. Gärdenfors, P.: Belief Revision. No. 29 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press (1992)

    Google Scholar 

  34. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56(2–3), 323–390 (1992)

    MathSciNet  CrossRef  Google Scholar 

  35. Gkaniatsou, A., McNeill, F., Bundy, A., Steel, G., Focardi, R., Bozzato, C.: Getting to know your card: Reverse-engineering the smart-card application protocol data unit. In: ACSAC 2015 Proceedings of the 31st Annual Computer Security Applications Conference, pp. 441–450. ACM (2015). https://doi.org/10.1145/2818000.2818020

  36. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. Journal of Automated Reasoning 16(1–2), 79–111 (1996)

    MathSciNet  CrossRef  Google Scholar 

  37. Ireland, A., Ellis, B.J., Cook, A., Chapman, R., Barnes, J.: An integrated approach to high integrity software verification. Journal of Automated Reasoning: Special Issue on Empirically Successful Automated Reasoning 36(4), 379–410 (2006)

    MathSciNet  CrossRef  Google Scholar 

  38. Ireland, A., Stark, J.: Combining proof plans with partial order planning for imperative program synthesis. Journal of Automated Software Engineering 13(1), 65–105 (2005)

    CrossRef  Google Scholar 

  39. Jamnik, M., Bundy, A., Green, I.: On automating diagrammatic proofs of arithmetic arguments. Journal of Logic, Language and Information 8(3), 297–321 (1999)

    MathSciNet  CrossRef  Google Scholar 

  40. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. Journal of Automated Reasoning 47, 251–289 (2011)

    MathSciNet  CrossRef  Google Scholar 

  41. Kowalski, R.: Logic for Problem Solving. Artificial Intelligence Series. North Holland (1979)

    MATH  Google Scholar 

  42. Kowalski, R.A., Kuehner, D.: Linear resolution with selection function. Artificial Intelligence 2, 227–60 (1971)

    MathSciNet  CrossRef  Google Scholar 

  43. Kraan, I., Basin, D., Bundy, A.: Middle-out reasoning for logic program synthesis. In: Proc. 10th Intern. Conference on Logic Programming (ICLP ’93) (Budapest, Hungary), pp. 441–455. MIT Press, Cambridge, MA (1993)

    Google Scholar 

  44. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press (1976)

    Google Scholar 

  45. Launchbury, J.: A DARPA perspective on artificial intelligence (2018). Talk with slides on YouTube

    Google Scholar 

  46. Lehmann, J., Chan, M., Bundy, A.: A higher-order approach to ontology evolution in Physics. Journal on Data Semantics pp. 1–25 (2013). https://doi.org/10.1007/s13740-012-0016-7

  47. Li, X., Bundy, A., Smaill, A.: ABC repair system for Datalog-like theories. In: 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, vol. 2, pp. 335–342. SCITEPRESS, Seville, Spain (2018). https://doi.org/10.5220/0006959703350342

  48. Lighthill, S.J.: Artificial Intelligence: A General Survey, pp. 1–21. Science Research Council (1973)

    Google Scholar 

  49. Lin, Y., Bundy, A., Grov, G., Maclean, E.: Automating Event-B invariant proofs by rippling and proof patching. Formal Aspects of Computing pp. 1–35 (2019). https://doi.org/10.1007/s00165-018-00476-7

  50. Llano, M.T., Ireland, A., Pease, A.: Discovery of invariants through automated theory formation. Formal Aspects Computing 26(2), 203–249 (2014)

    CrossRef  Google Scholar 

  51. Maclean, E., Ireland, A., Grov, G.: Proof automation for functional correctness in separation logic. Journal of Logic and Computation (2014). https://doi.org/10.1093/logcom/exu032

  52. Martinez, M., Abdel-Fattah, A., Krumnack, U., Gomez-Ramirez, D., Smaill, A., Besold, T.R., Pease, A., Schmidt, M., Guhe, M., Kühnberger, K.U.: Theory blending: Extended algorithmic aspects and examples. Annals of Mathematics and Artificial Intelligence 80(1), 65–89 (2017). https://doi.org/10.1007/s10472-016-9505-y. URL http://homepages.inf.ed.ac.uk/smaill/martinezEtAl16.pdf

  53. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. In: B. Meltzer, D. Michie (eds.) Machine Intelligence 4. Edinburgh University Press (1969)

    Google Scholar 

  54. McCasland, R.L., Bundy, A., Smith, P.F.: Ascertaining mathematical theorems. In: J. Carette, W.M. Farmer (eds.) Proceedings of Calculemus 2005. Newcastle, UK (2005)

    Google Scholar 

  55. McCune, W.: The Otter user’s guide. Tech. Rep. ANL/90/9, Argonne National Laboratory (1990)

    Google Scholar 

  56. McCune, W.: A Davis-Putnam program and its application to finite first-order model search. Tech. Rep. ANL/MCS-TM-194, Argonne National Laboratories (1994)

    Google Scholar 

  57. McNeill, F., Bundy, A.: Dynamic, automatic, first-order ontology repair by diagnosis of failed plan execution. International Journal on Semantic Web and Information Systems 3(3), 1–35 (2007). Special issue on ontology matching.

    Google Scholar 

  58. Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem discovery and concept invention. Expert Systems with Applications 39(2), 1637–1646 (2012)

    CrossRef  Google Scholar 

  59. Nelsen, R.B.: Proofs without Words: Exercises in Visual Thinking. The Mathematical Association of America (1993)

    Google Scholar 

  60. Nuamah, K.: Functional inferences over heterogeneous data. Ph.D. thesis, University of Edinburgh (2018)

    Google Scholar 

  61. Nuamah, K., Bundy, A.: Calculating error bars on inferences from web data. In: SAI Intelligent Systems Conference (IntelliSys), pp. 618–640. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01057-7_48

  62. O’Keefe, R.: Logic and lattices for a statistics advisor. Ph.D. thesis, University of Edinburgh (1987)

    Google Scholar 

  63. O’Keefe, R.A.: The Craft of Prolog. MIT Press, Cambridge, Mass (1990)

    Google Scholar 

  64. Paulson, L.: Isabelle: the next 700 theorem provers. In: P. Odifreddi (ed.) Logic and Computer Science, pp. 77–90. Academic Press (1990)

    Google Scholar 

  65. Peano, G.: Arithmetices Principia Novo Methodo Exposita. Bocca (1889). URL http://eudml.org/doc/203509

  66. Pease, A., Colton, S., Ramezani, R., Smaill, A., Guhe, M.: Using analogical representations for mathematical concept formation. In: L. Magnani, W. Carnielli, C. Pizzi (eds.) Model-based Reasoning in Science and Technology: Abduction, Logic, and Computational Discovery, no. 341 in Studies in Computational Intelligence, pp. 301–314. Springer (2010). URL http://springerlink.com/content/y1t348758g46q462/fulltext.pdf

  67. Robertson, D., Bundy, A., Muetzelfeldt, R., Haggith, M., Uschold, M.: Eco-Logic: Logic-Based Approaches to Ecological Modelling. MIT Press (1991)

    Google Scholar 

  68. Silver, B.: Meta-level inference: Representing and Learning Control Information in Artificial Intelligence. North Holland (1985). Revised version of the author’s PhD thesis, Department of Artificial Intelligence, U. of Edinburgh, 1984

    Google Scholar 

  69. Steel, G., Bundy, A.: Attacking group protocols by refuting incorrect inductive conjectures. Journal of Automated Reasoning First Online Edition, 1–28 (2005). Special Issue on Automated Reasoning for Security Protocol Analysis

    Google Scholar 

  70. Sterling, L., Bundy, A., Byrd, L., O’Keefe, R., Silver, B.: Solving symbolic equations with PRESS. J. Symbolic Computation 7, 71–84 (1982). Also available from Edinburgh as DAI Research Paper 171.

    Google Scholar 

  71. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge, MA (1986)

    MATH  Google Scholar 

  72. Winterstein, D., Bundy, A., Gurr, C.: Dr. Doodle: A diagrammatic theorem prover. In: D. Basin, M. Rusinowitch (eds.) Automated Reasoning, Lecture Notes in Computer Science, pp. 331–335. Springer Berlin Heidelberg (2004). https://doi.org/10.1007/978-3-540-25984-8_24

    Google Scholar 

Download references

Acknowledgements

The research reported in this paper was mainly supported by a succession of EPSRC rolling and platform grants. Thanks to Greg Michaelson, Kwabena Nuamah, Predrag Janičić and two anonymous referees for feedback on earlier versions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Bundy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bundy, A. (2021). The History of the DReaM Group. In: Michaelson, G. (eds) Mathematical Reasoning: The History and Impact of the DReaM Group. Springer, Cham. https://doi.org/10.1007/978-3-030-77879-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77879-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77878-1

  • Online ISBN: 978-3-030-77879-8

  • eBook Packages: Computer ScienceComputer Science (R0)