Abstract
Oblivious transfer (OT) is an essential cryptographic tool that can serve as a building block for almost all secure multiparty functionalities. The strongest security notion against malicious adversaries is universal composability (UC-secure). An important goal is to have post-quantum OT protocols. One area of interest for post-quantum cryptography is isogeny-based crypto. Isogeny-based cryptography has some similarities to Diffie-Hellman, but lacks some algebraic properties that are needed for discrete-log-based OT protocols. Hence it is not always possible to directly adapt existing protocols to the isogeny setting.
We propose the first practical isogeny-based UC-secure oblivious transfer protocol in the presence of malicious adversaries. Our scheme uses the CSIDH framework and does not have an analogue in the Diffie-Hellman setting. The scheme consists of a constant number of isogeny computations. The underlying computational assumption is a problem that we call the computational reciprocal CSIDH problem, and that we prove polynomial-time equivalent to the computational CSIDH problem.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14
Barreto, P., Oliveira, G., Benits, W., Nascimento, A.: Supersingular isogeny oblivious transfer. Cryptology ePrint Archive, report 2018/459 (2018). https://eprint.iacr.org/2018/459
Barreto, P.S., David, B., Dowsley, R., Morozov, K., Nascimento, A.C.: A framework for efficient adaptively secure composable oblivious transfer in the ROM, arXiv preprint arXiv:1710.08256 (2017)
Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_48
Bernstein, D., de Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies of large prime degree, arXiv preprint arXiv:2003.10118 (2020)
Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9
Burdges, J., Feo, L.D. Delay encryption. Cryptology ePrint Archive, report 2020/638 (2020). https://eprint.iacr.org/2020/638
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13, 143–202 (2000)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols, in Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)
Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 639–648 (1996)
Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_5
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_3
Couveignes, J.M.: Hard homogeneous spaces. 1997, IACR Cryptology ePrint Archive, 2006, p. 291 (2006)
Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_9
David, B.M., Nascimento, A.C.A., Müller-Quade, J.: Universally composable oblivious transfer from lossy encryption and the McEliece assumptions. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 80–99. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32284-6_5
de Saint Guilhem, C., Orsini, E., Petit, C., Smart, N.P.: Secure oblivious transfer from semi-commutative masking. IACR Cryptology ePrint Archive, 2018, p. 648 (2018)
Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_26
Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.C.A.: Oblivious transfer based on the McEliece assumptions. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 107–117. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85093-9_11
Felderhoff, J.: Hard homogeneous spaces and commutative supersingular isogeny based diffie-hellman, internship report, LIX, Ecole polytechnique, ENS de Lyon, August 2019
De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth ACM Symposium on Theory of Computing, STOC, pp. 218–229. ACM (1987)
Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number field. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22–24, 2005, pp. 468–474 (2005)
Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. ISC, Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14303-8
Jao, D., et al.: Sike: supersingular isogeny key encapsulation (2017). https://sike.org/
Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2
Lai, Y.-F., Galbraith, S.D., de Saint Guilhem, C.D.: Compact, efficient and UC-secure isogeny-based oblivious transfer. Cryptology ePrint Archive, report 2020/1012 (2020). https://eprint.iacr.org/2020/1012
Lindell, A.Y.: Efficient fully-simulatable oblivious transfer. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79263-5_4
Meyer, M., Campos, F., Reith, S.: On Lions and elligators: an efficient constant-time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_17
Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 448–457 (2001)
NIST: National institute of standards and technology (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
Oded, G.: Foundations of cryptography: Volume 2, basic applications (2009)
Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: A constant-time algorithm of CSIDH keeping two points. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 103, 1174–1182 (2020)
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31
Rabin, M.O.: How to exchange secrets with oblivious transfer, Technical report TR-81, p. 187. Harvard University, Aiken Computation Lab (1981)
Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptology ePrint Archive, 2006, p. 145 (2006)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999)
Vitse, V.: Simple oblivious transfer protocols compatible with supersingular isogenies. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 56–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_4
Wu, Q.-H., Zhang, J.-H., Wang, Y.-M.: Practical t-out-n oblivious transfer and its applications. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 226–237. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8_21
Acknowledgments
We sincerely thank the anonymous reviewers of EUROCRYPT 2021 for their patience and valuable comments that helped to substantially improve the presentation of this work. We are also grateful to Wouter Castryck for sharing his knowledge of isogenies and Yehuda Lindell for sharing his knowledge of MPC. This research is partially funded by the Ministry for Business, Innvovation and Employment in New Zealand.
This work was supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT and by CyberSecurity Research Flanders with reference number VR20192203. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERC or of Cyber Security Research Flanders.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Lai, YF., Galbraith, S.D., Delpech de Saint Guilhem, C. (2021). Compact, Efficient and UC-Secure Isogeny-Based Oblivious Transfer. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12696. Springer, Cham. https://doi.org/10.1007/978-3-030-77870-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-77870-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77869-9
Online ISBN: 978-3-030-77870-5
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
https://iacr.org/