Skip to main content

Analysing the HPKE Standard

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12696)

Abstract

The Hybrid Public Key Encryption (HPKE) scheme is an emerging standard currently under consideration by the Crypto Forum Research Group (CFRG) of the IETF as a candidate for formal approval. Of the four modes of HPKE, we analyse the authenticated mode \(\mathsf {HPKE}_\mathsf {Auth}\) in its single-shot encryption form as it contains what is, arguably, the most novel part of HPKE.

\(\mathsf {HPKE}_\mathsf {Auth}\)’s intended application domain is captured by a new primitive which we call Authenticated Public Key Encryption (APKE). We provide syntax and security definitions for APKE schemes, as well as for the related Authenticated Key Encapsulation Mechanisms (AKEMs). We prove security of the AKEM scheme \(\mathsf {DH}\hbox {-}\mathsf {AKEM}\) underlying \(\mathsf {HPKE}_\mathsf {Auth}\) based on the Gap Diffie-Hellman assumption and provide general AKEM/DEM composition theorems with which to argue about \(\mathsf {HPKE}_\mathsf {Auth}\)’s security. To this end, we also formally analyse \(\mathsf {HPKE}_\mathsf {Auth}\)’s key schedule and key derivation functions. To increase confidence in our results we use the automatic theorem proving tool CryptoVerif. All our bounds are quantitative and we discuss their practical implications for \(\mathsf {HPKE}_\mathsf {Auth}\).

As an independent contribution we propose the new framework of nominal groups that allows us to capture abstract syntactical and security properties of practical elliptic curves, including the Curve25519 and Curve448 based groups (which do not constitute cyclic groups).

Keywords

  • Public-key encryption
  • Authentication
  • Signcryption
  • Key encapsulation mechanisms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-77870-5_4
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-77870-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)

Notes

  1. 1.

    The ESNI RFC calls for a client initiating a TLS connection to send an HPKE ciphertext to the server. Although not as common, TLS can also be used in settings with bi-directional authentication. In particular, clients can use certificates binding their identities to their public key to authenticate themselves to the server. Unfortunately, it is unclear how the server would know, a priori, which public key to use for the client when attempting to decrypt the HPKE ciphertext.

  2. 2.

    The only exception we are aware of are the security notions used to analyse 2 bilinear-pairing-based schemes in Sections 5.5 and 5.6 of [18].

  3. 3.

    The exact probability bound is indicated in Lemma 8 of that paper’s full version.

References

  1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12

    CrossRef  Google Scholar 

  2. Alwen, J., Blanchet, B., Hauck, E., Kiltz, E., Lipp, B., Riepel, D.: Analysing the HPKE standard - supplementary material. https://doi.org/10.5281/zenodo.4297811

  3. Alwen, J., Blanchet, B., Hauck, E., Kiltz, E., Lipp, B., Riepel, D.: Analysing the HPKE standard. Cryptology ePrint Archive, Report 2020/1499 (2020). https://eprint.iacr.org/2020/1499

  4. Barnes, R.L., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert, R.: The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-09, IETF Secretariat, March 2020. https://tools.ietf.org/html/draft-ietf-mls-protocol-09

  5. Barnes, R.L., Bhargavan, K., Lipp, B., Wood, C.A.: Hybrid Public Key Encryption. Internet-Draft draft-irtf-cfrg-hpke-08, IETF Secretariat, October 2020. https://tools.ietf.org/html/draft-irtf-cfrg-hpke-08

  6. Bellare, M.: New proofs for NMAC and HMAC: security without collision resistance. J. Cryptol. 28(4), 844–878 (2015)

    CrossRef  MathSciNet  Google Scholar 

  7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

    CrossRef  Google Scholar 

  8. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004). http://eprint.iacr.org/2004/331

  9. Bellare, M., Stepanovs, I.: Security under message-derived keys: signcryption in iMessage. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 507–537. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_17

    CrossRef  Google Scholar 

  10. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption: AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 247–276. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_10

    CrossRef  MATH  Google Scholar 

  11. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

    CrossRef  Google Scholar 

  12. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference implementations for the TLS 1.3 standard candidate. In: 2017 IEEE Symposium on Security and Privacy, pp. 483–502. IEEE Computer Society Press, May 2017

    Google Scholar 

  13. Blanchet, B.: A computationally sound mechanized prover for security protocols. IEEE Trans. Dependable Secure Comput. 5(4), 193–207 (2008)

    CrossRef  Google Scholar 

  14. Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: relations, instantiations, and impossibility results. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 651–681. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_22

    CrossRef  Google Scholar 

  15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    CrossRef  MathSciNet  Google Scholar 

  16. Dent, A.W.: Hybrid signcryption schemes with insidersecurity. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 253–266. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_22

    CrossRef  MATH  Google Scholar 

  17. Dent, A.W.: Hybrid signcryption schemes with outsider security. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 203–217. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992_15

    CrossRef  MATH  Google Scholar 

  18. Dent, A.W., Zheng, Y. (eds.): Practical Signcryption. Information Security and Cryptography. Springer, HeidelbergHeidelberg (2010). https://doi.org/10.1007/978-3-540-89411-7

    CrossRef  MATH  Google Scholar 

  19. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again? (In)differentiability results for \(H^2\) and HMAC. Cryptology ePrint Archive, Report 2013/382 (2013). http://eprint.iacr.org/2013/382

  20. Gayoso Martínez, V., Alvarez, F., Hernandez Encinas, L., Sánchez Ávila, C.: A comparison of the standardized versions of ECIES. In: 2010 6th International Conference on Information Assurance and Security, IAS 2010, August 2010

    Google Scholar 

  21. Gilbert, H., Handschuh, H.: Security analysis of SHA-256 and sisters. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 175–193. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24654-1_13

    CrossRef  Google Scholar 

  22. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure messaging protocols and their implementations: a symbolic and computational approach. In: 2nd IEEE European Symposium on Security and Privacy, pp. 435–450. IEEE, April 2017

    Google Scholar 

  23. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message authentication. RFC 2104, RFC Editor, February 1997. https://www.rfc-editor.org/rfc/rfc2104.html

  24. Krawczyk, H., Eronen, P.: HMAC-based extract-and-expand key derivation function (HKDF). RFC 5869, RFC Editor, May 2010. https://www.rfc-editor.org/rfc/rfc5869.html

  25. Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. RFC 7748, RFC Editor, January 2016. https://www.rfc-editor.org/rfc/rfc7748.html

  26. Lipp, B.: An analysis of hybrid public key encryption. Cryptology ePrint Archive, Report 2020/243 (2020). https://eprint.iacr.org/2020/243

  27. Lipp, B., Blanchet, B., Bhargavan, K.: A mechanised cryptographic proof of the WireGuard virtual private network protocol. In: 4th IEEE European Symposium on Security and Privacy, Stockholm, Sweden, pp. 231–246. IEEE Computer Society, June 2019. https://hal.inria.fr/hal-02100345

  28. National Institute of Standards and Technology: Digital Signature Standard (DSS). FIPS Publication 186-4, July 2013. https://doi.org/10.6028/nist.fips.186-4

  29. Omara, E., Beurdouche, B., Rescorla, E., Inguva, S., Kwon, A., Duric, A.: The Messaging Layer Security (MLS) Architecture. Internet-Draft draft-ietf-mls-architecture-05, IETF Secretariat, July 2020. https://tools.ietf.org/html/draft-ietf-mls-architecture-05

  30. Rescorla, E., Oku, K., Sullivan, N., Wood, C.A.: TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-07, IETF Secretariat, June 2020. https://tools.ietf.org/html/draft-ietf-tls-esni-07

  31. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(\ll \) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052234

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the HPKE RFC co-authors Richard Barnes, Karthikeyan Bhargavan, and Christopher Wood for fruitful discussions during the preparation of this paper.

Bruno Blanchet was supported by ANR TECAP (decision number ANR-17-CE39-0004-03). Eduard Hauck was supported by the DFG SPP 1736 Big Data. Eike Kiltz was supported by the BMBF iBlockchain project, the EU H2020 PROMETHEUS project 780701, the DFG SPP 1736 Big Data, and the DFG Cluster of Excellence 2092 CASA. Benjamin Lipp was supported by ERC CIRCUS (grant agreement n\(^\circ \) 683032) and ANR TECAP (decision number ANR-17-CE39-0004-03). Doreen Riepel was supported by the Cluster of Excellence 2092 CASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Alwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Alwen, J., Blanchet, B., Hauck, E., Kiltz, E., Lipp, B., Riepel, D. (2021). Analysing the HPKE Standard. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12696. Springer, Cham. https://doi.org/10.1007/978-3-030-77870-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77870-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77869-9

  • Online ISBN: 978-3-030-77870-5

  • eBook Packages: Computer ScienceComputer Science (R0)