Abstract
Order diagrams allow human analysts to understand and analyze structural properties of ordered data. While an expert can create easily readable order diagrams, the automatic generation of those remains a hard task. In this work, we adapt force-directed approaches, which are known to generate aesthetically-pleasing drawings of graphs, to the realm of order diagrams. Our algorithm ReDraw thereby embeds the order in a high dimension and then iteratively reduces the dimension until a two-dimensional drawing is achieved. To improve aesthetics, this reduction is equipped with two force-directed steps where one step optimizes the distances of nodes and the other one the distances of lines in order to satisfy a set of a priori fixed conditions. By respecting an invariant about the vertical position of the elements in each step of our algorithm we ensure that the resulting drawings satisfy all necessary properties of order diagrams. Finally, we present the results of a user study to demonstrate that our algorithm outperforms comparable approaches on drawings of lattices with a high degree of distributivity.
Keywords
- Ordered sets
- Order diagram drawing
- Lattice drawing
- Force-directed algorithms
- Dimensional reduction
- Graph drawing
This is a preview of subscription content, access via your institution.
Buying options






References
Albano, A., Chornomaz, B.: Why concept lattices are large: extremal theory for generators, concepts, and vc-dimension. Int. J. Gen. Syst. 46(5), 440–457 (2017)
Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)
Demel, A., Dürrschnabel, D., Mchedlidze, T., Radermacher, Ml, Wulf, L.: A greedy heuristic for crossing-angle maximization. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 286–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_20
Dürrschnabel, D., Hanika, T., Stumme, G.: Drawing order diagrams through two-dimension extension. CoRR abs/1906.06208 (2019)
Eades, P.: A heuristic for graph drawing. Congressus Numer. 42, 149–160 (1984)
Freese, R.: Automated Lattice Drawing. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 112–127. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_12
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)
Ganter, B.: Conflict avoidance in additive order diagrams. J. Univ. Comput. Sci. 10(8), 955–966 (2004)
Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2
Hong, S., Eades, P., Lee, S.H.: Drawing series parallel digraphs symmetrically. Comput. Geom. 17(3–4), 165–188 (2000)
Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)
Nishizeki, T., Rahman, M.S.: Planar graph drawing. In: Lecture Notes Series on Computing, vol. 12. World Scientific (2004)
Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)
Wille, R.: Truncated distributive lattices: conceptual structures of simple-implicational theories. Order 20(3), 229–238 (2003)
Yevtushenko, S.A.: Computing and visualizing concept lattices. Ph.D. thesis, Darmstadt University of Technology, Germany (2004)
Zschalig, C.: An FDP-algorithm for drawing lattices. In: Eklund, P.W., Diatta, J., Liquiere, M. (eds.) Proceedings of the Fifth International Conference on Concept Lattices and Their Applications, CLA 2007, Montpellier, France, 24–26, October 2007. CEUR Workshop Proceedings, vol. 331. CEUR-WS.org (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dürrschnabel, D., Stumme, G. (2021). Force-Directed Layout of Order Diagrams Using Dimensional Reduction. In: Braud, A., Buzmakov, A., Hanika, T., Le Ber, F. (eds) Formal Concept Analysis. ICFCA 2021. Lecture Notes in Computer Science(), vol 12733. Springer, Cham. https://doi.org/10.1007/978-3-030-77867-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-77867-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77866-8
Online ISBN: 978-3-030-77867-5
eBook Packages: Computer ScienceComputer Science (R0)