Skip to main content

Efficiency of Thermopressor Application in an Ejector Refrigeration Machine

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing IV (DSMIE 2021)

Abstract

This paper investigates the influence of using thermopressor devices in the heat using ejector refrigeration machine cycles. The thermopressor is a multifunctional apparatus in which refrigerant vapor is cooled, and a simultaneous pressure is increased. A calculation method was used to determine the thermodynamic and energy efficiency of a thermopressor as part of an ejector refrigeration machine. It is proposed to use the apparatus for cooling the vapor in front of the condenser. The calculation considered the pressure loss in the nozzle (confuser), the working chamber, the diffuser, and the frontal resistance of the injected liquid droplets. The thermopressor application in the ejector refrigeration machine cycle allows increasing the ejection coefficient and the ejector refrigeration machine thermal coefficient due to increasing the pressure. The expected increase in the thermal coefficient is 1.5–2.0%. The results obtained are an important contribution to the development of thermopressor technologies and can be used to design jet devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Radchenko, M., Radchenko, R., Ostapenko, O., Zubarev, A., Hrych, A.: Enhancing the utilization of gas engine module exhaust heat by two-stage chillers for combined electricity, heat and refrigeration. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, pp. 240–244 (2019)

    Google Scholar 

  2. Radchenko, M., Mikielewicz, D., Tkachenko, V., Klugmann, M., Andreev, A.: Enhancement of the operation efficiency of the transport air conditioning system. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 332–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_32

    Chapter  Google Scholar 

  3. Khovanskyi, S., Pavlenko, I., Pitel, J., Mizakova, J., Ochowiak, M., Grechka, I.: Solving the coupled aerodynamic and thermal problem for modeling the air distribution devices with perforated plates. Energies 12(18), 3488 (2019). https://doi.org/10.3390/en12183488

    Article  Google Scholar 

  4. Elbel, S., Hrnjak, P.: Ejector Refrigeration: An Overview of Historical and Present Developments with an Emphasis on Air-Conditioning Applications. In: International Refrigeration and Air Conditioning Conference, Purdue. Paper 884 (2008)

    Google Scholar 

  5. Elbel, S.: Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning. Int. J. Refrig. 34(7), 1545–1561 (2011)

    Article  Google Scholar 

  6. Hafner, A., Gabrielii, C.H., Widell, K.: Refrigeration units in marine vessels. Nordic Council of Ministers (2018)

    Google Scholar 

  7. Pounds, D.A., Dong, J.M., Cheng, P., Ma, H.B.: Experimental investigation and theoretical analysis of an ejector refrigeration system. Int. J. Therm. Sci. 67, 200–209 (2013)

    Article  Google Scholar 

  8. Trushliakov, E., Radchenko, M., Bohdal, T., Radchenko, R., Kantor, S.: An innovative air conditioning system for changeable heat loads. In: Tonkonogyi, V., et al. (eds.) InterPartner 2019. LNME, pp. 616–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_63

    Chapter  Google Scholar 

  9. Radchenko, M., Radchenko, R., Kornienko, V., Pyrysunko, M.: Semi-empirical correlations of pollution processes on the condensation surfaces of exhaust gas boilers with water-fuel emulsion combustion. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 853–862. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_85

    Chapter  Google Scholar 

  10. Radchenko, R., Kornienko, V., Pyrysunko, M., Bogdanov, M., Andreev, A.: Enhancing the efficiency of marine diesel engine by deep waste heat recovery on the base of its simulation along the route line. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) Integrated Computer Technologies in Mechanical Engineering. AISC, vol. 1113, pp. 337–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37618-5_29

    Chapter  Google Scholar 

  11. Kornienko, V., Radchenko, R., Bohdal, Ł, Kukiełka, L., Legutko, S.: Investigation of condensing heating surfaces with reduced corrosion of boilers with water-fuel emulsion combustion. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 300–309. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_25

    Chapter  Google Scholar 

  12. Kornienko, V., Radchenko, R., Stachel, A., Andreev, A., Pyrysunko, M.: Correlations for pollution on condensing surfaces of exhaust gas boilers with water-fuel emulsion combustion. In: Tonkonogyi, V. (ed.) InterPartner 2019. LNME, pp. 530–539. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_54

    Chapter  Google Scholar 

  13. Kornienko, V., Radchenko, R., Mikielewicz, D., Pyrysunko, M., Andreev, A.: Improvement of characteristics of water-fuel rotary cup atomizer in a boiler. In: Tonkonogyi, V., et al. (eds.) InterPartner 2020. LNME, pp. 664–674. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_64

    Chapter  Google Scholar 

  14. Radchenko, R., Pyrysunko, M., Kornienko, V., Scurtu, I.-C., Patyk, R.: Improving the ecological and energy efficiency of internal combustion engines by ejector chiller using recirculation gas heat. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 531–541. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_45

    Chapter  Google Scholar 

  15. Stefan, E., Neal, L.: Review of recent developments in advanced ejector technology. Int. J. Refrig. 62, 1–18 (2016)

    Article  Google Scholar 

  16. Nehdi, E., Kairouani, L., Bouzaina, M.: Performance analysis of the vapour compression cycle using ejector as an expander. Int. J. Energy Res. 31, 364–375 (2007)

    Article  Google Scholar 

  17. Butrymowicz, D., Smierciew, K., Karwacki, J.: Investigation of internal heat transfer in ejection refrigeration systems. Int. J. Refrig 40, 131–139 (2014)

    Article  Google Scholar 

  18. Tan, Y., Wang, L., Liang, K.: Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32, R236fa. Appl. Therm. Eng. 84, 268–275 (2015)

    Article  Google Scholar 

  19. Mohammed, K., Nicolas, G., Mikhail, S.: Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems. Appl. Energy 179, 1020–1031 (2016)

    Article  Google Scholar 

  20. Yapici, R., Ersoy, H.K.: Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model. Energy Convers. Manag. 46, 3117–3135 (2005)

    Article  Google Scholar 

  21. Radchenko, N.I.: On reducing the size of liquid separators for injector circulation plate freezers. Int. J. Refrig. 8(5), 267–269 (1985)

    Article  Google Scholar 

  22. Shapiro, A.H.: The Aerothermopressor. University of Nottingham, Nottingham (1956)

    Google Scholar 

  23. Fowle, A.: An Experimental Investigation of an Aerothermopressor having a gas flow Capacity of 25 pounds per second. Massachusetts Institute of Technology, USA (1972)

    Google Scholar 

  24. Erickson, J.: A Theoretical and Experimental Investigation of the Aerothermopressor Process. Massachusetts Institute of Technology, Hoboken (1958)

    Google Scholar 

  25. Mackay, R.T.: Experimental Investigation of an Aerothermopressor with Supersonic Inlet. Massachusetts Institute of Technology, Hoboken (1955)

    Google Scholar 

  26. Perelshtein, B.H.: To the entropy analysis of thermal resistance in the combustion chamber of a gas turbine engine and the “effect” of aerothermopression. Aviation Technol. 1, 77–80 (2003)

    Google Scholar 

  27. Konovalov, D., Kobalava, H., Radchenko, M., Sviridov, V., Scurtu, I.C.: Optimal sizing of the evaporation chamber in the low-flow aerothermopressor for a combustion engine. In: Tonkonogyi, V., et al. (eds.) InterPartner 2020. LNME, pp. 654–663. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_63

    Chapter  Google Scholar 

  28. Merzliakov, I., Pavlenko, I., Chekh, O., Sharapov, S., Ivanov, V.: Mathematical modeling of operating process and technological features for designing the vortex type liquid-vapor jet apparatus. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 613–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_61

    Chapter  Google Scholar 

  29. Konovalov, D., Kobalava, H., Radchenko, M., Scurtu, I.C., Radchenko, R.: Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling. In: TE-RE-RD 2020, E3S Web of Conferences, vol. 180, p. 01012 (2020)

    Google Scholar 

  30. Konovalov, D., Kobalava, H., Maksymov, V., Radchenko, R., Avdeev, M.: Experimental research of the excessive water injection effect on resistances in the flow part of a low-flow aerothermopressor. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 292–301. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_28

    Chapter  Google Scholar 

  31. Shapiro, A.H., Wadleigh, K.R., Gavril, B.D., Fowi, A.A.: The aerothermopressor – a device for improving the performance of a gas-turbine power plant. Trans. ASME 78(7), 617–653 (1956)

    Google Scholar 

  32. Lawrence, N., Elbel, S.: Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf. Int. J. Refrig. 38, 310–322 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Konovalov, D., Kobalava, H., Radchenko, A., Zielikov, O., Khaldobin, V. (2021). Efficiency of Thermopressor Application in an Ejector Refrigeration Machine. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77823-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77823-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77822-4

  • Online ISBN: 978-3-030-77823-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics