Skip to main content

Simulation of the Bulk and Granular Materials Separation Process in the Scissor Type Gravity Separator

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing IV (DSMIE 2021)

Abstract

In different industries, separation (classification) is a typical process in processing bulk and granular materials. The mathematical model of the separation process based on theoretical mechanics and Markov chains’ theory was proposed. The model allows us to consider the sieve parameters, such as the tilt angle, the pitch and size of sieve orifices, and the material particles’ parameters such as size, friction coefficient, and initial velocity. Modeling the separation process allows us to justify the sieve parameters when the sieve is used effectively. The research methodology involved a comparison between model predictions and experimental data. The bulk material separation process’s intensity index on the sieve was calculated based on the experimental study results. Comparison between model data and experimental data indicates the adequacy of the proposed mathematical model of the separation process. The separator’s design elements are also offered, which will ensure the separation process’s high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao, H., Wang, Q., Li, Q.: Modelling and simulation of the straw-grain separation process based on a discrete element model with flexible hollow cylindrical bonds. Comput. Electron. Agric. 170 (2020). https://doi.org/10.1016/j.compag.2020.105229

    Article  Google Scholar 

  2. Giyevskiy, A.M., Orobinsky, V.I., Tarasenko, A.P., Chernyshov, A.V., Kurilov, D.O.: Substantiation of basic scheme of grain cleaning machine for preparation of agricultural crops seeds. In: IOP Conference Series: Materials Science and Engineering, vol. 327, p. 042035 (2018). https://doi.org/10.1088/1757-899x/327/4/042035

  3. Li, J., Webb, C., Pandiella, S.S., Campbell, G.M.: A numerical simulation of separation of crop seeds by screening – effect of particle bed depth. Food Bioprod. Process. 80(2), 109–117 (2002). https://doi.org/10.1205/09603080252938744

    Article  Google Scholar 

  4. Kugbei, S., Avungana, M., Hugo, W.: Seeds Toolkit. Module 2: Seed processing: principles, equipment and practice. FAO and AfricaSeeds, Rome (2018)

    Google Scholar 

  5. Basiry, M., Esehaghbeygi, A.: Cleaning and charging of seeds with an electrostatic separator. Appl. Eng. Agric. 28(1), 143–147 (2012). https://doi.org/10.13031/2013.41274

    Article  Google Scholar 

  6. Harzanagh, A.A., Orhan, E.C., Ergun, S.L.: Discrete element modelling of vibrating screens. Miner. Eng. 121, 107–121 (2018). https://doi.org/10.1016/j.mineng.2018.03.010

    Article  Google Scholar 

  7. Badretdinov, I., Mudarisov, S., Lukmanov, R., Ibragimov, R., Permyakov, V., Tuktarov, M.: Mathematical modeling and study of the grain cleaning machine sieve frame operation. INMATEH Agric. Eng. 60(1), 19–28 (2020). https://doi.org/10.35633/inmateh-60-02

  8. Chen, Y., Tong, X.: Application of the DEM to screening process: a 3D simulation. Min. Sci. Technol. (China) 19(4), 493–497 (2009). https://doi.org/10.1016/s1674-5264(09)60092-2

    Article  Google Scholar 

  9. Meng, X., Jia, F., Qiu, H., Han, Y., Zeng, Y., Xiao, Y., Chen, P.: DEM study of white rice separation in an indented cylinder separator. Powder Technol. 348, 1–12 (2019). https://doi.org/10.1016/j.powtec.2019.03.013

    Article  Google Scholar 

  10. Medles, K., Dascalescu, L., Tilmatine, A., Bendaoud, A., Younes, M.: Experimental modeling of the electrostatic separation of granular materials. Part. Sci. Technol. 25(2), 163–171 (2007). https://doi.org/10.1080/02726350701257816

    Article  Google Scholar 

  11. Sharapov, R.R., Prokopenko, V.S., Sharapov, R.R.: Modeling of the separation process in dynamic separators. World Appl. Sci. J. 25(3), 536–542 (2013)

    Google Scholar 

  12. Lenaerts, B., Aertsen, T., Tijskens, E., De Ketelaere, B., Ramon, H., De Baerdemaeker, J., Saeys, W.: Simulation of grain–straw separation by Discrete Element Modeling with bendable straw particles. Comput. Electron. Agric. 101, 24–33 (2014). https://doi.org/10.1016/j.compag.2013.12.002

    Article  Google Scholar 

  13. Rycroft, C.H., Kamrin, K., Bazant, M.Z.: Assessing continuum postulates in simulations of granular flow. J. Mech. Phys. Solids 57(5), 828–839 (2009). https://doi.org/10.1016/j.jmps.2009.01.009

    Article  Google Scholar 

  14. Mota, M., Teixeira, J.A., Yelshin, A.: Image analysis of packed beds of spherical particles of different sizes. Sep. Purif. Technol. 15(1), 59–68 (1999). https://doi.org/10.1016/S1383-5866(98)00085-9

    Article  Google Scholar 

  15. Dong, K.J., Wang, B., Yu, A.B.: Modeling of particle flow and sieving behavior on a vibrating screen: from discrete particle simulation to process performance prediction. Ind. Eng. Chem. Res. 52(33), 11333–11343 (2013). https://doi.org/10.1021/ie3034637

    Article  Google Scholar 

  16. Horabik, J., Molenda, M.: Parameters and contact models for DEM simulations of agricultural granular materials: a review. Biosys. Eng. 147, 206–225 (2016). https://doi.org/10.1016/j.biosystemseng.2016.02.017

    Article  Google Scholar 

  17. Elskamp, F., Kruggel-Emden, H.: Review and benchmarking of process models for batch screening based on discrete element simulations. Adv. Powder Technol. 26(3), 679–697 (2015). https://doi.org/10.1016/j.apt.2014.11.001

    Article  Google Scholar 

  18. Wang, G., Tong, X.: Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation. Mining Sci. Technol. 21(3), 451–455 (2011). https://doi.org/10.1016/j.mstc.2011.05.026

    Article  Google Scholar 

  19. Zhao, L., Zhao, Y., Liu, C., Li, J., Dong, H.: Simulation of the screening process on a circularly vibrating screen using 3D-DEM. Mining Sci. Technol. 21(5), 677–680 (2011). https://doi.org/10.1016/j.mstc.2011.03.010

    Article  Google Scholar 

  20. Lopez, G.I.: Grain size analysis. Encycl. Earth Sci. Ser. 341–348 (2016). https://doi.org/10.1007/978-1-4020-4409-0_18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Dudarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dudarev, I., Olkhovskyi, V., Panasyuk, S., Khomych, S. (2021). Simulation of the Bulk and Granular Materials Separation Process in the Scissor Type Gravity Separator. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77823-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77823-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77822-4

  • Online ISBN: 978-3-030-77823-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics