Skip to main content

Contact Interaction of a Ball Piston and a Running Track in a Hydrovolumetric Transmission

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing IV (DSMIE 2021)

Abstract

Modern hydrovolumetric transmissions with ball pistons work under high loads. In the field of their contact interaction with the running track, there are significant efforts. For analyzing the contact interaction of ball pistons with running tracks, the pliability of their surface layers is considered. They are modeled with materials with nonlinear properties. The analysis of changes in the contact area and contact pressure distributions depending on the properties of the material of the intermediate layer is carried out. In particular, a material with a bilinear elastic characteristic was investigated. It was found that the properties of the material strongly affect both the shape and size of the contact area. This changes the distribution of contact pressure. At low pressing force, the contact area has an oval shape. The contact pressure has a maximum in the center of the contact area. With increasing pressing force, the contact area takes the form of a dumbbell. The maximum contact pressure is shifted to the periphery of the contact area. Thus, it is possible to control the distribution of contact pressure by changing the properties of the material of the intermediate layer. Accordingly, it is possible to influence the stress-strain state of contacting bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avrunin, G., Kabanenko, S., Khavil, V.: Volumetric hydraulic transmission with ball pistons GOP-900: characteristics and technical level. Mech. Mech. Eng. 1, 14–21 (2004)

    Google Scholar 

  2. Panchenko, A., Voloshina, A., Panchenko, I., Titova, O., Pastushenko, A.: Reliability design of rotors for orbital hydraulic motors. IOP Conf. Ser. Mater. Sci. Eng. 708(1), 012017 (2019)

    Google Scholar 

  3. Voloshina, A., Panchenko, A., Panchenko, I., Titova, O., Zasiadko, A.: Improving the output characteristics of planetary hydraulic machines. IOP Conf. Ser. Mater. Sci. Eng. 708(1), 012038 (2019)

    Google Scholar 

  4. Panchenko, A., Voloshina, A., Milaeva, I., Luzan, P.: Operating conditions’ influence on the change of functional characteristics for mechatronic systems with orbital hydraulic motors. In: Nadykto, V. (ed.) Modern Development Paths of Agricultural Production, pp. 169–176. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14918-5_18

    Chapter  Google Scholar 

  5. Voloshina, A., Panchenko, A., Panchenko, I., Zasiadko, A.: Geometrical parameters for distribution systems of hydraulic machines. In: Nadykto, V. (ed.) Modern Development Paths of Agricultural Production, pp. 323–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14918-5_34

    Chapter  Google Scholar 

  6. Panchenko, A., Voloshina, A., Titova, O., Panchenko, I., Caldare, A.: Design of hydraulic mechatronic systems with specified output characteristics. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 42–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_5

    Chapter  Google Scholar 

  7. Pavlenko, I., Ivanov, V., Kuric, I., Gusak, O., Liaposhchenko, O.: Ensuring vibration reliability of turbopump units using artificial neural networks. In: Trojanowska, J., Ciszak, O., Machado, J.M., Pavlenko, I. (eds.) MANUFACTURING 2019. LNME, pp. 165–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18715-6_14

    Chapter  Google Scholar 

  8. Martynyak, R.M., Prokopyshyn, I.A., Prokopyshyn, I.I.: Contact of elastic bodies with nonlinear Winkler surface layers. J. Math. Sci. 205, 535–553 (2015)

    Article  MathSciNet  Google Scholar 

  9. Zhao, J., Vollebregt, E., Oosterlee, C.: Extending the BEM for elastic contact problems beyond the half-space approach. Math. Modell. Anal. 21(1), 119–141 (2016)

    Article  MathSciNet  Google Scholar 

  10. Persson, B.N.J., Bucher, F., Chiaia, B.: Elastic contact between randomly rough surfaces: comparison of theory with numerical results. Phys. Rev. B 65(18), 184106 (2002)

    Article  Google Scholar 

  11. Pohrt, R., Popov, V.L.: Contact stiffness of randomly rough surfaces. Sci. Rep. 3, 3293 (2013)

    Article  Google Scholar 

  12. Ciavarella, M.: Adhesive rough contacts near complete contact. Int. J. Mech. Sci. 104, 104–111 (2015)

    Article  Google Scholar 

  13. Papangelo, A., Hoffmann, N., Ciavarella, M.: Load-separation curves for the contact of self-affine rough surfaces. Sci. Rep. 7(1), 6900 (2017)

    Google Scholar 

  14. Ciavarella, M., Dibello, S., Demelio, G.: Conductance of rough random profiles. Int. J. Solids Struct. 45(3), 879–893 (2008)

    Article  Google Scholar 

  15. Ciavarella, M., Murolo, G., Demelio, G., Barber, J.R.: Elastic contact stiffness and contact resistance for the Weierstrass profile. J. Mech. Phys. Solids 52(6), 1247–1265 (2004)

    Google Scholar 

  16. Ciavarella, M., Greenwood, J.A., Paggi, M.: Inclusion of «interaction» in the Greenwood and Williamson contact theory. Wear 265(5), 729–734 (2008)

    Article  Google Scholar 

  17. Paggi, M., Ciavarella, M.: The coefficient of proportionality κ between real contact area and load, with new asperity models. Wear 268(7), 1020–1029 (2010)

    Article  Google Scholar 

  18. Popov, V.L., Pohrt, R., Li, Q.: Strength of adhesive contacts: influence of contact geometry and material gradients. Friction 5(3), 308–325 (2017). https://doi.org/10.1007/s40544-017-0177-3

    Article  Google Scholar 

  19. Pohrt, R., Popov, V.L.: Contact mechanics of rough spheres: crossover from fractal to Hertzian behavior. Adv. Tribol. 2, 974178 (2013)

    Google Scholar 

  20. Persson, B.N.J.: Relation between interfacial separation and load: a general theory of contact mechanics. Phys. Rev. Lett. 99(12), 125502 (2007)

    Article  Google Scholar 

  21. Pastewka, L., Prodanov, N., Lorenz, B.: Finite-size scaling in the interfacial stiffness of rough elastic contacts. Phys. Rev. E 87, 062809 (2013)

    Article  Google Scholar 

  22. Tkachuk, M.M., Skripchenko, N., Tkachuk, M.A., Grabovskiy, A.: Numerical methods for contact analysis of complex-shaped bodies with account for non-linear interface layers. Eastern Eur. J. Enterp. Technol. 5/7(95), 22–31 (2018)

    Google Scholar 

  23. Tkachuk, M.M., Grabovskiy, A., Tkachuk, M.A., Saverska, M., Hrechka, I.: A semi-analytical method for analysis of contact interaction between structural elements along aligned surfaces. Eastern-Eur. J. Enterp. Technol. 1/7(103), 16–25 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Tkachuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tkachuk, M., Grabovskiy, A., Tkachuk, M., Hrechka, I., Sierykov, V. (2021). Contact Interaction of a Ball Piston and a Running Track in a Hydrovolumetric Transmission. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77823-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77823-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77822-4

  • Online ISBN: 978-3-030-77823-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics