Skip to main content

Axiomatics as a Functional Strategy for Complex Proofs: The Case of Riemann Hypothesis

  • Chapter
  • First Online:
Axiomatic Thinking II

Abstract

My purpose is to comment some claims of André Weil (1906–1998) in his letter of March 26, 1940 to his sister Simone, in particular, the following quotation: “it is essential, if mathematics is to stay as a whole, to provide a unification, which absorbs in some simple and general theories all the common substrata of the diverse branches of the science, suppressing what is not so useful and necessary, and leaving intact what is truly the specific detail of each big problem. This is the good one can achieve with axiomatics”. For Weil (and Bourbaki), the main problem was to find “strategies” for finding complex proofs of “big problems”. For that, the dialectic balance between general structures and specific details is crucial. I will focus on the fact that, for these creative mathematicians, the concept of structure is a functional concept, which has always a “strategic” creative function. The “big problem” here is Riemann Hypothesis (RH). Artin, Schmidt, Hasse, and Weil introduced an intermediary third world between, on the one hand, Riemann original hypothesis on the non-trivial zeroes of the zeta function in analytic theory of numbers, and, on the other hand, the algebraic theory of compact Riemman surfaces. The intermediary world is that of projective curves over finite fields of characteristic \(p\ge 2\). RH can be translated in this context and can be proved using sophisticated tools of algebraic geometry (divisors, Riemann-Roch theorem, intersection theory, Severi-Castelnuovo inequality) coupled with the action of Frobenius maps in characteristic \(p\ge 2\). Recently, Alain Connes proposed a new strategy and constructed a new topos theoretic framework à la Grothendieck where Weil’s proof could be transferred by analogy back to the original RH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a summary of the proof, see Petitot [15].

  2. 2.

    For previous elements, see Connes, Consani, Marcolli [5].

  3. 3.

    For an overview of the various approaches towards \(\mathbb {F}_1\)-geometry, see, e.g. López Peña-Lorscheid [13].

  4. 4.

    As was emphasized by a reviewer, “\(\mathbb {Z}_{\text {max}}\), when viewed just as a semi-field, is not sufficiently deep” because “multiplication of numbers is not part of the structure of \(\mathbb {Z}_{\text {max}}\) as a semi-field. By employing the arithmetic site, multiplication is put back in. The true object to consider is then \(\mathbb {Z}_{\text {max}}\) regarded as a sheaf over the arithmetic site”.

References

  1. Artin, E., 1921. “Quadratische Körper im Gebiete der höheren Kongruenzen I, II”, Math.Zeitschr., 19 (1924) 153–246. See Collected Papers, Addison-Wesley, Reading, MA, 1965.

    Google Scholar 

  2. Bourbaki, N. (alias J. Dieudonné) 1948. Manifesto: “L’architecture des mathématiques”, Les grands courants de la pensée mathématique, F. Le Lionnais ed., Cahiers du Sud, 1948.

    Google Scholar 

  3. Cartier, P., 1993. “Des nombres premiers à la géométrie algébrique (une brève histoire de la fonction zeta)”, Cahiers du Séminaire d’Histoire des mathématiques (2ème série), tome 3 (1993) 51–77.

    Google Scholar 

  4. Connes, A., 2016. “An essay on the Riemann Hypothesis”, Open Problems in Mathematics, (J.F. Nash, M.Th. Rassias, eds), Springer, 2016, 225–257.

    Google Scholar 

  5. Connes, A., Consani, C., Marcolli, M., 2007. “The Weil proof and the geometry of the adeles class space”, Algebra, Arithmetic, and Geometry, (Y. Tschinkel, Y. Zarhin, eds.), Springer, 2009.

    Google Scholar 

  6. Connes, A., Consani, C., 2009. “Schemes over \(\mathbb{F}_{1}\) and zeta functions”, https://arxiv.org/pdf/0903.2024.pdf

  7. Connes, A., Consani, C., 2016. “Geometry of the scaling site”, https://arxiv.org/abs/1603.03191.

  8. Corry, L., 1996. “Nicolas Bourbaki: Theory of Structures”, Modern Algebra and the Rise of Mathematical Structures, (Chapter 7), Birkhäuser, 1996.

    Google Scholar 

  9. Dedekind, R., Weber, H., 1882. “Theorie der algebraischen Funktionen einer Veränderlichen”, Journal für die reine und angewandte Mathematik, 92 (1882) 181–290, Berlin.

    Google Scholar 

  10. Garrett, P., 2012. “Riemann-Hadamard product for \(\zeta (s)\)”, http://www-users.math.umn.edu/~garrett/m/number_theory/riemann_hadamard_product.pdf

  11. Hasse, H., 1936. “Zur Theorie der abstrakten elliptischen Funktionenkörper. I, II, III”, J. Reine Angew. Math., 175 (1936) 55–62, 69–88, 193–208.

    Google Scholar 

  12. Hindry, M., 2012. “La preuve par André Weil de l’hypothèse de Riemann pour une courbe sur un corps fini”, http://www.math.polytechnique.fr/xups/xups12-02.pdf

  13. López Peña, J., Lorscheid, O., 2009. “Mapping \(\mathbb{F}_1\)-land. An overview of geometries over the field with one element”, https://arxiv.org/abs/0909.0069

  14. Milne, J., 2015. “The Riemann Hypothesis over finite fields from Weil to the present day”, The Legacy of Bernhard Riemann after One Hundred and Fifty Years (L. Ji, F. Oort, S-T Yau eds), Advanced Lectures in Mathematics 35, International Press, 2015, 487–565.

    Google Scholar 

  15. Petitot, J., 1993. “The unity of mathematics as a method of discovery: Wiles’ example”, http://jeanpetitot.com/ArticlesPDF/STW_Wiles.pdf

  16. Riemann, B., 1859. “Über die Anzahl der Primzahlen unter einer gegeben Grösse”, Monatsberichte der Königlichen Preußischen Akademie der Wissenschaften zu Berlin. Aus dem Jahre 1859. S. 671–680. (“On the number of prime numbers less than a given quantity”).

    Google Scholar 

  17. Roquette, P., 2003. The Riemann hypothesis in characteristic p, its origin and development, 1, https://www.mathi.uni-heidelberg.de/roquette/rv.pdf

  18. Schmidt, F. K., 1931. “Analytische Zahlentheorie in Körpern der Charakteristik \(p\), Math. Zeitschr., 33 (1931) 1–32.

    Article  Google Scholar 

  19. Soulé, C., 2004. “Les variétés sur le corps à un élément, Mosc. Math. J., 4 (2004), 1, 217–244.

    Google Scholar 

  20. Tate, J., 1993. “A review of non-Archimedean elliptic functions”, Elliptic curves, modular forms, and Fermat’s last theorem, Int. Press, Cambridge, MA, 1995, 162–184.

    Google Scholar 

  21. Weil, A., 1938. “Zur algebraischen Theorie des algebraischen Funktionen”, Journal de Crelle, 179 (1938) 129–138.

    Article  Google Scholar 

  22. Weil, A., 1940, Letter to his sister Simone (March 26, 1940), Collected Papers, vol.1, 244–255. Translated by M. Krieger, Notices of the AMS, 52/3 (2005) 334–341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Petitot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petitot, J. (2022). Axiomatics as a Functional Strategy for Complex Proofs: The Case of Riemann Hypothesis. In: Ferreira, F., Kahle, R., Sommaruga, G. (eds) Axiomatic Thinking II. Springer, Cham. https://doi.org/10.1007/978-3-030-77799-9_8

Download citation

Publish with us

Policies and ethics