Skip to main content

Carbohydrate Analysis of Glycoconjugates

  • Chapter
  • First Online:
The Art of Carbohydrate Analysis
  • 1283 Accesses

Abstract

For studies of glycan structure/function relationships of glycoconjugates, a detailed characterization of the carbohydrate moiety is a prerequisite. To this end, the glycans are usually released and isolated before analysis. This chapter provides protocols for the chemical and enzymatic release of different types of glycans from glycoconjugates and discusses the pro and cons of the different methods. A typical strategy for the analysis of glycoproteins is described. The preparation of glycopeptides and their isolation might form part of this process. Furthermore, a typical scheme for the analysis of proteoglycans and their glycosaminoglycans is provided. Also, attention is paid to the analysis of glycolipids and polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mariño K, Saldova R, Adamczyk B, Rudd PM. Changes in serum N-glycosylation profiles: functional significance and potential for diagnostics. Carbohydr Chem. 2012;37:57–93.

    Google Scholar 

  2. Stumpo KA, Reinhold VN. The N-glycome of human plasma. J Proteome Res. 2010;9:4823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Defaus S, Gupta P, Andreu D, Gutiérrez-Gallego R. Mammalian protein glycosylation—structure versus function. Analyst. 2014;139:2944–67.

    CAS  PubMed  Google Scholar 

  4. Zhang L, Luo S, Zhang B. Glycan analysis of therapeutic glycoproteins. MAbs. 2016;8:205–15.

    CAS  PubMed  Google Scholar 

  5. Yang X, Bartlett MG. Glycan analysis for protein therapeutics. J Chromatogr B 2019;1120:29–40.

    Google Scholar 

  6. Simpson RJ, editor. Purifying proteins for proteomics: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2004.

    Google Scholar 

  7. Rosenberg IM. Protein analysis and purification. Basel: Birkhauser; 2005.

    Google Scholar 

  8. Walls D, Loughran S, editors. Protein chromatography. Totowa: Humana Press; 2017.

    Google Scholar 

  9. Hong Q, Ruhaak LR, Stroble C, Parker E, Huang J, Maverakis E, Lebrilla CB. A method for comprehensive glycosite-mapping and direct quantitation of serum glycoproteins. J Proteome Res. 2015;14:5179–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mariño K, Bones J, Kattla JJ, Rudd PM. A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol. 2010;6:713–23.

    PubMed  Google Scholar 

  12. Krishnamoorthy L, Mahal LK. Glycomic analysis: an array of technologies. ACS Chem Biol. 2009;4:715–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mechref Y, Hu Y, Desantos-Garcia JI, Hussein A, Tang H. Quantitative glycomics strategies. Mol Cell Proteomics. 2013;12:874–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaunitz S, Nagy G, Pohl NLB, Novotny MV. Recent advances in the analysis of complex glycoproteins. Anal Chem. 2017;89:389–413.

    CAS  PubMed  Google Scholar 

  15. Domann PJ, Pardos-Pardos AC, Fernandes DL, Spencer DI, Radcliffe CM, et al. Separation-based glycoprofiling approaches using fluorescent labels. Proteomics. 2007;7(suppl. 1):70–6.

    PubMed  Google Scholar 

  16. Zhang Y, Peng Y, Yang L, Lu H. Advances in sample preparation strategies for MS-based qualitative and quantitative N-glycomics. TrAC Trends Anal Chem. 2018;99:34–46.

    CAS  Google Scholar 

  17. DeLeoz MLA, Duewer DL, Fung A, Liu L, Yau HK, et al. NIST interlaboratory study on glycosylation analysis of monoclonal antibodies: comparison of results from diverse analytical methods. Mol Cell Proteomics. 2020;19:11–30.

    CAS  Google Scholar 

  18. Vreeker GCM, Wuhrer M. Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem. 2017;409:359–78.

    CAS  PubMed  Google Scholar 

  19. Jensen PH, Karlsson NG, Kolarich D, Packer NH. Structural analysis of N- and O-glycans released from glycoproteins. Nat Protocol. 2012;7:1299–310.

    CAS  Google Scholar 

  20. Anumula KR. Analysis of Ser/Thr-linked sugar chains. In: Post-translational modification of proteins: tools for functional proteomics, Methods in molecular biology, vol. 1934. Springer Science + Business Media; 2019. p. 33–42.

    Google Scholar 

  21. Yuan JB, Wang CJ, Sun YJ, Huang LJ, Wang ZF. Nonreductive chemical release of intact N-glycans for subsequent labeling and analysis by mass spectrometry. Anal Biochem. 2014;462:1–9.

    CAS  PubMed  Google Scholar 

  22. Lv GP, Hu DJ, Cheong KL, Li ZY, Qing XM, Zhao J, Li SP. Decoding glycome of Astragalus membranaceus based on pressurized liquid extraction, microwave-assisted hydrolysis and chromatographic analysis. J Chromatogr A. 2015;1409:19–29.

    CAS  PubMed  Google Scholar 

  23. Cai K, Hu D, Lei B, Zhao H, Pan W, Song B. Determination of carbohydrates in tobacco by pressurized liquid extraction combined with a novel ultrasound-assisted dispersive liquid-liquid microextraction method. Anal Chim Acta. 2015;882:90–100.

    CAS  PubMed  Google Scholar 

  24. Narimatsu H, Kaji H, Vakhrushev SY, Clausen H, Zhang H, Noro E, Togayachi A, Nagai-Okatani C, Kuno A, Zou X, Cheng L, Tao S-C, Sun Y. Current technologies for complex glycoproteomics and their applications to biology/disease-driven glycoproteomics. J Proteome Res. 2018;17:4097–112.

    CAS  PubMed  Google Scholar 

  25. Goso Y. Malonic acid suppresses mucin-type O-glycan degradation during hydrazine treatment of glycoproteins. Anal Biochem. 2016;496:35–42.

    CAS  PubMed  Google Scholar 

  26. Chen WX, Smeekens JM, Wu RH. Comprehensive analysis of protein N-glycosylation sites by combining chemical deglycosylation with LC-MS. J Proteome Res. 2014;13:1466–73.

    CAS  PubMed  Google Scholar 

  27. Goso Y, Sugaya T, Ishihara K, Kurihara M. Comparison of methods to release mucin-type O-glycans for glycomic analysis. Anal Chem. 2017;89:8870–6.

    CAS  PubMed  Google Scholar 

  28. Kameyama A, Dissanayake SK, Thet Tin WW. Rapid chemical de-N-glycosylation and derivatization for liquid chromatography of immunoglobulin N-linked glycans. PLoS One. 2018;13:e019800.

    Google Scholar 

  29. Zhang Q, Li Z, Song X. Preparation of complex glycans from natural sources for functional study. Front Chem. 2020;8(508):1–12.

    PubMed  PubMed Central  Google Scholar 

  30. Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Methods. 2016;13:528–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Song X, Ju H, Zhao C, Lasanajak Y. Novel strategy to release and tag N-glycans for functional glycomics. Bioconjug Chem. 2014;25:1881–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kameyama A, Thet Tin WW, Toyoda M, Sakaguchi M. A practical method of liberating O-linked glycans from glycoproteins using hydroxylamine and an organic superbase. Biochem Biophys Res Commun. 2019;513:186–92.

    CAS  PubMed  Google Scholar 

  33. Blanchard V, Gadkari RA, Gerwig GJ, Leeflang BR, Dighe RR, Kamerling JP. Characterization of N-linked oligosaccharides from human chorionic gonadotropin expressed in the methylotrophic yeast Pichia pastoris. Glycoconj J. 2007;24:33–47.

    CAS  PubMed  Google Scholar 

  34. Kobata A. Exo- and endoglycosidases revisited. Proc Jpn Acad Ser B. 2013;89:97–118.

    CAS  Google Scholar 

  35. Sandoval W, Arellano F, Arnott D, Raab H. Rapid removal of N-linked oligosaccharides using microwave assisted enzyme catalyzed deglycosylation. Int J Mass Spectrom. 2007;259:117–23.

    CAS  Google Scholar 

  36. Szabo Z, Guttman A, Karger BL. Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem. 2010;82:2588–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Szigeti M, Bondar J, Gjerde D, Keresztessy Z, Szekrenyes A, Guttman A. Rapid N-glycan release from glycoproteins using immobilized PNGase F microcolumns. J Chromatogr B. 2016;1032:139–43.

    CAS  Google Scholar 

  38. Royle L, Campbell MP, Radcliffe CM, White DW, Harvey DJ, Abrahams JL, Kim YG, Henry GW, Shadick NA, Weinblatt ME, Lee DM, Rudd PM, Dwek RA. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem. 2008;376:1–12.

    CAS  PubMed  Google Scholar 

  39. Zhang T, Madunić K, Holst S, Zhang J, Jin C, Ten Dijke P, Karlsson NG, Stavenhagen K, Wuhrer M. Development of a 96-well plate sample preparation method for integrated N- and O-glycomics using porous graphitized carbon liquid chromatography-mass spectrometry. Mol Omics. 2020;16:355–63.

    PubMed  Google Scholar 

  40. Valk-Weeber RL, Dijkhuizen L, Van Leeuwen SS. Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydr Res. 2019;479:13–22.

    CAS  PubMed  Google Scholar 

  41. Sun X, Tao L, Yi L, Ouyang Y, Xu N, Li D, Linhardt RJ, Zhang Z. N-glycans released from glycoproteins using a commercial kit and comprehensively analyzed with a hypothetical database. J Pharmaceut Anal. 2017;7:87–94.

    Google Scholar 

  42. Ruhaak LR, Huhn C, Waterreus WJ, De Boer AR, Neusüss C, Hokke CH, Deelder AM, Wuhrer M. Hydrophilic interaction chromatography-based high-throughput sample preparation method for N-glycan analysis from total human plasma glycoproteins. Anal Chem. 2008;80:6119–26.

    CAS  PubMed  Google Scholar 

  43. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397:3457–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wuhrer M, Catalina MI, Deelder AM, Hokke CH. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B. 2007;849:115–28.

    CAS  Google Scholar 

  45. Wada Y, Dell A, Haslam SM, Tissot B, Canis K, et al. Comparison of methods for profiling O-glycosylation. Mol Cell Proteomics. 2010;9:719–27.

    CAS  PubMed  Google Scholar 

  46. Zauner G, Kozak RP, Gardner RA, Fernandes DI, Deelder AM, Wuhrer M. Protein O-glycosylation analysis. Biol Chem. 2012;393:687–708.

    CAS  PubMed  Google Scholar 

  47. You X, Quin H, Ye M. Recent advances in methods for the analysis of protein O-glycosylation at proteome level. J Sep Sci. 2018;41:248–61.

    CAS  PubMed  Google Scholar 

  48. Anumula KR. Single tag for total carbohydrate analysis. Anal Biochem. 2014;457:31–7.

    CAS  PubMed  Google Scholar 

  49. Gerwig GJ, Vliegenthart JFG. Analysis of glycoprotein-derived glycopeptides. In: Jollès P, Jörnvall H, editors. Proteomics in functional genomics. Basel: Birkhäuser Verlag; 2000. p. 159–86.

    Google Scholar 

  50. Zhu Z, Desaire H. Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry. Annu Rev Anal Chem. 2015;8:463–83.

    CAS  Google Scholar 

  51. Morelle W, Michalski JC. Analysis of protein glycosylation by mass spectrometry. Nat Protocol. 2007;2:1585–602.

    CAS  Google Scholar 

  52. Dalpathado DS, Desaire H. Glycopeptide analysis by mass spectrometry. Analyst. 2008;133:731–8.

    CAS  PubMed  Google Scholar 

  53. Dallas DC, Martin WF, Hua S, German JB. Automated glycopeptide analysis—review of current state and future direction. Brief Bioinform. 2013;14:361–74.

    CAS  PubMed  Google Scholar 

  54. Thaysen-Andersen M, Packer NH. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim Biophys Acta. 2014;1844:1437–52.

    CAS  PubMed  Google Scholar 

  55. Yang Y, Franc V, Heck AJR. Glycoproteomics: a balance between high-throughput and in-depth analysis. Trends Biotechnol. 2017;35:598–609.

    CAS  PubMed  Google Scholar 

  56. Nwosu CC, Huang J, Aldredge DL, Strum JS, Hua S, Seipert RR, Lebrilla CB. In-gel nonspecific proteolysis for elucidating glycoproteins (INPEG)—a method for targeted protein-specific glycosylation analysis in complex protein mixtures. Anal Chem. 2013;85:956–63.

    CAS  PubMed  Google Scholar 

  57. Stavenhagen K, Plomp R, Wuhrer M. Site-specific protein N- and O-glycosylation analysis by a C18-porous graphitized carbon-liquid chromatography-electrospray ionization mass spectrometry approach using pronase treated glycopeptides. Anal Chem. 2015;87:11691–9.

    CAS  PubMed  Google Scholar 

  58. Goldberg D, Bern M, Parry S, Sutton-Smith M, Panico M, Morris HR, Dell A. Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res. 2007;6:3995–4004.

    CAS  PubMed  Google Scholar 

  59. Ueda K, Takami S, Saichi N, Daigo Y, Ishikawa N, Kohno N, Katsumata M, Yamane A, Ota M, Sato TA, Nakamura Y, Nakagawa H. Development of serum glycoproteomic profiling technique: Simultaneous identification of glycosylation sites and site-specific quantification of glycan structure changes. Mol Cell Proteomics. 2010;9:1819–28.

    PubMed  PubMed Central  Google Scholar 

  60. Gilar M, Yu YQ, Ahn J, Xie HW, Han HH, Ying WT, Qian XH. Characterization of glycoprotein digests with hydrophilic interaction chromatography and mass spectrometry. Anal Biochem. 2011;417:80–8.

    CAS  PubMed  Google Scholar 

  61. Parker BI, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR, Graham ME, Packer NH, Cordwell SJ. Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res. 2013;12:5791–800.

    CAS  PubMed  Google Scholar 

  62. Goldman R, Sanda M. Targeted methods for quantitative analysis of protein glycosylation. Proteomics Clin Appl. 2015;9:17–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ji ES, Lee HK, Park GW, Kim KH, Kim JY, Yoo JS. Isomer separation of sialylated O- and N-linked glycopeptides using reversed-phase LC-MS/MS at high temperature. J Chromatogr B. 2019;1110–1111:101–7.

    Google Scholar 

  64. Qing G, Yan J, He X, Li X, Liang X. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trends Anal Chem. 2020;124:115570.

    CAS  Google Scholar 

  65. Selman MHJ, Hemayatkar M, Deelder AM, Wuhrer M. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem. 2011;83:2492–9.

    CAS  PubMed  Google Scholar 

  66. Pasing Y, Sickman A, Lewandrowski U. N-glycoproteomics: mass spectrometry-based glycosylation site annotation. Biol Chem. 2012;393:249–58.

    CAS  PubMed  Google Scholar 

  67. Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci. 2012;35:2341–72.

    CAS  PubMed  Google Scholar 

  68. Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev. 2013;113:2668–732.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen CC, Su WC, Huang BY, Chen YJ, Tai HC, Obena RP. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst. 2014;139:688–704.

    CAS  PubMed  Google Scholar 

  70. Desaire H. Glycopeptide analysis, recent developments and applications. Mol Cell Proteomics. 2013;12:893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kolli V, Schumacher KN, Dodds ED. Engaging challenges in glycoproteomics: recent advances in MS-based glycopeptide analysis. Bioanalysis. 2015;7:113–31.

    CAS  PubMed  Google Scholar 

  72. Nilsson J. Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J. 2016;33:261–72.

    CAS  PubMed  Google Scholar 

  73. Jin C, Harvey DJ, Struwe WB, Karlsson NG. Separation of isomeric O-glycans by ion mobility and liquid chromatography-mass spectrometry. Anal Chem. 2019;91:10604–13.

    CAS  PubMed  Google Scholar 

  74. Fu L, Suflita M, Linhardt RJ. Bioengineered heparins and heparan sulfates. Adv Drug Deliv Rev. 2016;97:237–49.

    CAS  PubMed  Google Scholar 

  75. Whitelock JM, Iozzo RV. Isolation and purification of proteoglycans. Methods Cell Biol. 2002;69:53–67.

    CAS  PubMed  Google Scholar 

  76. Ly M, Laremore TN, Linhardt RJ. Proteoglycomics: recent progress and future challenges. OMICS. 2010;14:389–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fasciano JM, Danielson ND. Ion chromatography for the separation of heparin and structurally related glycosaminoglycans: a review. J Sep Sci. 2016;39:1118–29.

    CAS  PubMed  Google Scholar 

  78. Woods A, Couchman JR. Proteoglycan isolation and analysis. Curr Protoc Cell Biol. 2018;80:e59.

    PubMed  Google Scholar 

  79. Prabhakar V, Capila I, Sasisekharan R. The structural elucidation of glycosaminoglycans. Methods Mol Biol. 2009;534:147–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Amon S, Zamfir AD, Rizzi A. Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis. 2008;29:2485–507.

    CAS  PubMed  Google Scholar 

  81. Zaia J. Glycosaminoglycan glycomics using mass spectrometry. Mol Cell Proteomics. 2013;12:885–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Solakyildirim K. Recent advances in glycosaminoglycan analysis by various mass spectrometry techniques. Anal Bioanal Chem. 2019;411:3731–41.

    CAS  PubMed  Google Scholar 

  83. Beccati D, Lech M, Ozug J, Gunay NS, Wang J, Sun EY, Pradines JR, Farutin V, Shriver Z, Kaundinya GV, Capila I. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure. Glycoconj J. 2017;34:107–17.

    CAS  PubMed  Google Scholar 

  84. Liu X, St Ange K, Wang X, Lin L, Zhang F, Chi L, et al. Parent heparin and daughter LMW heparin correlation analysis using LC-MS and NMR. Anal Chim Acta. 2017;961:91–9.

    CAS  PubMed  Google Scholar 

  85. Li L, Ly M, Linhardt RJ. Proteoglycan sequence. Mol Biosyst. 2012;8:1613–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang W, Wang J, Li F. Hyaluronidase and chondroitinase. Adv Exp Med Biol. 2017;925:75–87.

    CAS  PubMed  Google Scholar 

  87. Zaia J. On-line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrom Rev. 2009;28:254–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Volpi N, Linhardt RJ. High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides. Nat Protoc. 2010;5:993–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li G, Li L, Tian F, Zhang L, Xue C, Linhardt RJ. Glycosaminoglycanomics of cultured cells using a rapid and sensitive LC-MS/MS approach. ACS Chem Biol. 2015;10:1303–10.

    CAS  PubMed  Google Scholar 

  90. Yu Y, Zhang F, Colón W, Linhardt RJ, Xia K. Glycosaminoglycans in human cerebrospinal fluid determined by LC-MS/MS MRM. Anal Biochem. 2019;567:82–4.

    CAS  PubMed  Google Scholar 

  91. Zamfir AD. Applications of capillary electrophoresis electrospray ionization mass spectrometry in glycosaminoglycan analysis. Electrophoresis. 2016;37:973–86.

    CAS  PubMed  Google Scholar 

  92. Wang X, Liu X, Li L, Zhang F, Hu M, Ren F, et al. GlycCompSoft: software for automated comparison of low molecular weight heparins using top-down LC/MS data. PLoS One. 2016;11:1–13.

    Google Scholar 

  93. Hu H, Khatri K, Zaia J. Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev. 2017;36(4):475–98. https://doi.org/10.1002/mas.21487.

    Article  CAS  PubMed  Google Scholar 

  94. Duan J, Amster IJ. An automated, high-throughput method for interpreting the tandem mass spectra of glycosaminoglycans. J Am Soc Mass Spectrom. 2018;29:1802–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hogan JD, Klein JA, Wu J, Chopra P, Boons G-J, Carvalho L, et al. Software for peak finding and elemental composition assignment for glycosaminoglycan tandem mass spectra. Mol Cell Proteomics. 2018;17:1448–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Christie WW, Han X. Lipid analysis: isolation, separation, identification and lipidomic analysis. Cambridge: Woodhead Publishing; 2010.

    Google Scholar 

  97. Owen DM, editor. Methods in membrane lipids. Totowa: Humana Press; 2014.

    Google Scholar 

  98. Akiyama H, Ide M, Yamaji T, Mizutani Y, Niimi Y, Mutoh T, Kamiguchi H, Hirabayashi Y. Galabiosylceramide is present in human cerebrospinal fluid. Biochem Biophys Res Commun. 2021;536:73–9.

    CAS  PubMed  Google Scholar 

  99. Song X, Smith DF, Cummings RD. Nonenzymatic release of free reducing glycans from glycosphingolipids. Anal Biochem. 2012;429:82–7.

    CAS  PubMed  Google Scholar 

  100. Li Y-T, Chou C-W, Li S-C, Kobayashi U, Ishibashi Y-H, Ito M. Preparation of homogenous oligosaccharide chains from glycosphingolipids. Glycoconj J. 2009;26:929.

    CAS  PubMed  Google Scholar 

  101. Albrecht S, Vainauskas S, Stöckmann H, McManus C, Taron CH, Rudd PM. Comprehensive profiling of glycosphingolipid glycans using a novel broad specificity endoglycoceramidase in a high-throughput workflow. Anal Chem. 2016;88:4795–802.

    CAS  PubMed  Google Scholar 

  102. Sarbu M, Zamfir AD. Modern separation techniques coupled to high performance mass spectrometry for glycolipid analysis. Electrophoresis. 2018;39:1155–70.

    CAS  PubMed  Google Scholar 

  103. Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome—a review. Anal Chim Acta. 2020;1132:134–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dangerfield JA, Metzner C. GPI membrane anchors: the much-needed link. Sharjah: Bentham Science Publishers; 2010.

    Google Scholar 

  105. Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 2020;10:190290.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Striepen B, Zinecker CF, Damm JLB, Melgers PAT, Gerwig GJ, Koolen M, Vliegenthart JFG, Dubremetz JF, Schwarz RT. Molecular structure of the “low molecular weight antigen” of Toxoplasma gondii: a glucose alpha1-4 N-acetylgalactosamine makes free glycosyl-phosphatidylinositols highly immunogenic. J Mol Biol. 1997;266:797–813.

    CAS  PubMed  Google Scholar 

  107. Orlean P, Menon AK. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res. 2007;48:993–1011.

    CAS  PubMed  Google Scholar 

  108. Gerwig GJ. Structural analysis of exopolysaccharides from lactic acid bacteria. In: Kanauchi M, editor. Lactic acid bacteria: methods and protocols, Methods in molecular biology, vol. 1887. Springer; 2019.

    Google Scholar 

  109. Song E, Shang J, Ratner D. Polysaccharides, polymer science: a comprehensive reference, vol. 10. Set: Elsevier; 2012.

    Google Scholar 

  110. Shi L. Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. Int J Biol Macromol. 2016;92:37–48.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit J. Gerwig .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerwig, G.J. (2021). Carbohydrate Analysis of Glycoconjugates. In: The Art of Carbohydrate Analysis. Techniques in Life Science and Biomedicine for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-030-77791-3_7

Download citation

Publish with us

Policies and ethics