Skip to main content

Abstract

The sensitivity of acoustic pressure to sound speed is investigated through the application of adjoint-based sensitivity analysis using an acoustic propagation model. The sensitivity analysis is extended to temperature and salinity, by deriving the adjoint of the sound polynomial function of temperature and salinity. Numerical experiments using a range dependent model are carried out in a deep and complex environment at the frequency of 300 Hz. It is shown that through the adjoint sensitivity analysis one can infer reasonable variations of sound speed, and thus temperature and salinity. Successful extension of the sensitivity of acoustic pressure to temperature and salinity implies that acoustic pressure observations in a given range-depth plane can be assimilated into an ocean model using the acoustic propagation model as the observation operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cacuci DG (1981) Sensitivity theory for nonlinear systems, part 1: nonlinear functional analysis approach. J Math Phys 22(12):2794–2802

    Article  Google Scholar 

  • Chen CT, Millero FJ (1977) Speed of sound in seawater at high pressures. J Acoust Soc Am 62(5):1129–1135

    Article  Google Scholar 

  • UNESCO (1983) Algorithms for computation of fundamental properties of seawater. UNESCO Tech Pap Mar Sci 44:1–55

    Google Scholar 

  • Collins MD, Cederberg RJ, King DB, Chin-Bing SA (1996) Comparison of algorithms for solving parabolic wave equations. J Acoust Soc Am 100(1):178–182

    Article  Google Scholar 

  • Hall MCG (1986) Application of adjoint sensitivity theory to an atmospheric general circulation model. J Atmos Sci 43:2644–2651

    Article  Google Scholar 

  • Hall MCG, Cacuci DG (1983) Physical interpretation of the adjoint functions for sensitivity analysis of atmospheric models. J Atmos Sci 40:2537–2546

    Article  Google Scholar 

  • Hall MCG, Cacuci DG, Schlesinger ME (1982) Sensitivity analysis of a radiative-convective model by the adjoint method. J Atmos Sci 39:2038–2050

    Article  CAS  Google Scholar 

  • Hursky P, Porter MB, Cornuelle BD, Hodgkiss WS, Kuperman WA (2004) Adjoint modeling for acoustic inversion. J Acoust Soc Am 115(2):607–619. https://doi.org/10.1121/1.1636760115,607-619

    Article  Google Scholar 

  • Lermusiaux PJF, Xu J, Chen C-F, Jan S, Chiu LY, Yiing-Jang Yang Y-J (2010) Coupled ocean-acoustic prediction of transmission loss in a continental Shelfbreak region: predictive skill, uncertainty quantification, and dynamical Sensitivities. IEEE J Oceanic Eng 35(4):895–916. https://doi.org/10.1109/JOE.2010.2068611

    Article  Google Scholar 

  • Meyer M, Hermand JP (2005) Optimal nonlocal boundary control of the wide-angle parabolic equation for inversion of a waveguide acoustic field. J Acoust Soc Am 117(5):2937–2948. https://doi.org/10.1121/1.1880872

    Article  Google Scholar 

  • Ngodock H, Carrier M, Fabre J, Zingarelli R, Souopgui I (2017) A variational data assimilation system for the range dependent acoustic model using the representer method: Theoretical derivations. J Acoust Soc Am 142(1):186–194. https://doi.org/10.1121.1.4989541

  • Skarsoulis EK, Cornuelle BD (2004) Travel-time sensitivity kernels in ocean acoustic tomography. J Acoust Soc Am 116(1):227–238

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Office of Naval Research Program Element 0601153N as part of the ‘‘ADARDA’’ project. This paper is NRL paper contribution number NRL/BC/7320-20-5022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans E. Ngodock .

Editor information

Editors and Affiliations

Appendix: Equation of Sound Speed with Its Tangent Linear and Adjoint

Appendix: Equation of Sound Speed with Its Tangent Linear and Adjoint

The equation for the speed of sound in seawater in m s−1, given by Chen and Millero (Chen and Millero 1977) is:

$$ U(s,t,P) = C_{w} (t,P) + A(t,P)s + B(t,P)s^{{\frac{3}{4}}} + D(t,P)s^{2} $$
(A1)

where s is the salinity in PSS-78, t the temperaure in °C and P the water column pressure in decibars, not to be confused with the acoustic pressure p used in the text above. A, B, C and D are temperature- and pressure-dependent parameters. The term Cw is defined as:

$$ \begin{aligned} C_{w} (t,P) & = C_{{00}} + C_{{01}} t + C_{{02}} t^{2} + C_{{03}} t^{3} + C_{{04}} t^{4} + C_{{05}} t^{5} \\ {\text{ }} & {\text{ + }}\left( {C_{{10}} + C_{{11}} t + C_{{12}} t^{2} + C_{{13}} t^{3} + C_{{14}} t^{4} } \right)P \\ {\text{ }} & {\text{ + }}\left( {C_{{20}} + C_{{21}} t + C_{{22}} t^{2} + C_{{23}} t^{3} + C_{{24}} t^{4} } \right)P^{2} \\ {\text{ }} & {\text{ + }}\left( {C_{{30}} + C_{{31}} t + C_{{32}} t^{2} } \right)P^{3} \\ \end{aligned} $$
(A2)

The term A is defined as:

$$ \begin{aligned} A(t,P) & = A_{{00}} + A_{{01}} t + A_{{02}} t^{2} + A_{{03}} t^{3} + A_{{04}} t^{4} \\ {\text{ }} & {\text{ + }}\left( {A_{{10}} + A_{{11}} t + A_{{12}} t^{2} + A_{{13}} t^{3} + A_{{14}} t^{4} } \right)P \\ {\text{ }} & {\text{ + }}\left( {A_{{20}} + A_{{21}} t + A_{{22}} t^{2} + A_{{23}} t^{3} } \right)P^{2} \\ {\text{ }} & {\text{ + }}\left( {A_{{30}} + A_{{31}} t + A_{{32}} t^{2} } \right)P^{3} \\ \end{aligned} $$
(A3)

The term B is defined as:

$$ B(t,P) = B_{{00}} + B_{{01}} t + \left( {B_{{10}} + B_{{11}} t} \right)P $$
(A4)

The term D is defined as:

$$ D(t,P) = D_{{00}} + D_{{10}} P $$
(A5)

Linearization

Note that in the derivations that follow we have neglected the variations of the water column pressure (P) with temperature and salinity. According the first order Taylor’s approximation, the equations (A1)–(A5) above can be linearized as follows, with the prime symbol appended to the linearized variables:

$$ \begin{gathered} U'(s,t,P,s',t') = C_{w}^{'} (t,P,t') + A'(t,P,t')s + A(t,P)s' \hfill \\ {\text{ }} + B'(t,P,t')s^{{\frac{3}{4}}} + B(t,P)s^{{ - \frac{1}{4}}} s' + 2D(t,P)ss' \hfill \\ \end{gathered} $$
(A6)
$$ \begin{gathered} C_{w}^{'} (t,P,t') = \left[ {\left( {C_{{01}} + 2C_{{02}} t + 3C_{{03}} t^{2} + 4C_{{04}} t^{3} + 5C_{{05}} t^{4} } \right)} \right. \hfill \\ {\text{ + }}\left( {C_{{11}} + 2C_{{12}} t + 3C_{{13}} t^{2} + 4C_{{14}} t^{3} } \right)P \hfill \\ {\text{ + }}\left( {C_{{21}} + 2C_{{22}} t + 3C_{{23}} t^{2} + 4C_{{24}} t^{3} } \right)P^{2} \hfill \\ {\text{ }}\left. {{\text{ + }}\left( {C_{{31}} + 2C_{{32}} t} \right)P^{3} } \right]t' \hfill \\ \end{gathered} $$
(A7)
$$ \begin{gathered} A'(t,P,t') = \left[ {\left( {A_{{01}} + 2A_{{02}} t + 3A_{{03}} t^{2} + 4A_{{04}} t^{3} } \right)} \right. \hfill \\ {\text{ + }}\left( {A_{{11}} + 2A_{{12}} t + 3A_{{13}} t^{2} + 4A_{{14}} t^{3} } \right)P \hfill \\ {\text{ + }}\left( {A_{{21}} + 2A_{{22}} t + 3A_{{23}} t^{2} } \right)P^{2} \hfill \\ {\text{ + }}\left. {{\text{ }}\left( {A_{{31}} + 2A_{{32}} t} \right)P^{3} } \right]t' \hfill \\ \end{gathered} $$
(A8)
$$ B'(t,P,t') = \left( {B_{{01}} + B_{{11}} P} \right)t' $$
(A9)

The Adjoint

In the following equation the * symbol is appended to the adjoint variables. Given the adjoint of sound speed as resulting from the adjoint of the acoustic propagation model, the adjoint variables associated to both temperature and salinity are obtained from transposing the equations (A6)–(A9) according the L2 inner product

$$ \begin{gathered} s* = \left[ {A(t,P) + B(t,P)s^{{ - \frac{1}{4}}} + 2D(t,P)s} \right]U* \hfill \\ B* = s^{{\frac{3}{4}}} U* \hfill \\ A* = sU* \hfill \\ C_{w}^{*} = U* \hfill \\ \end{gathered} $$
(A10)
$$ \begin{gathered} t* = t* + \left[ {\left( {C_{{01}} + 2C_{{02}} t + 3C_{{03}} t^{2} + 4C_{{04}} t^{3} + 5C_{{05}} t^{4} } \right)} \right. \hfill \\ {\text{ + }}\left( {C_{{11}} + 2C_{{12}} t + 3C_{{13}} t^{2} + 4C_{{14}} t^{3} } \right)P \hfill \\ {\text{ + }}\left( {C_{{21}} + 2C_{{22}} t + 3C_{{23}} t^{2} + 4C_{{24}} t^{3} } \right)P^{2} \hfill \\ {\text{ }}\left. {{\text{ + }}\left( {C_{{31}} + 2C_{{32}} t} \right)P^{3} } \right]C_{w}^{*} (t,P,t') \hfill \\ \end{gathered} $$
(A11)
$$ \begin{gathered} t* = t* + \left[ {\left( {A_{{01}} + 2A_{{02}} t + 3A_{{03}} t^{2} + 4A_{{04}} t^{3} } \right)} \right. \hfill \\ {\text{ + }}\left( {A_{{11}} + 2A_{{12}} t + 3A_{{13}} t^{2} + 4A_{{14}} t^{3} } \right)P \hfill \\ {\text{ + }}\left( {A_{{21}} + 2A_{{22}} t + 3A_{{23}} t^{2} } \right)P^{2} \hfill \\ {\text{ + }}\left. {{\text{ }}\left( {A_{{31}} + 2A_{{32}} t} \right)P^{3} } \right]A*(t,P,t') \hfill \\ \end{gathered} $$
(A12)
$$ t* = t* + \left( {B_{{01}} + B_{{11}} P} \right)B*(t,P,t') $$
(A13)

The coefficients for the above terms are given in Table 1 below.

Table 1 Coefficients of the polynomials (A1)—(A5)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Ngodock, H.E., Carrier, M.J., Fabre, J., Zingarelli, R., Smith, S., Souopgui, I. (2022). Sensitivity Analysis in Ocean Acoustic Propagation. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV). Springer, Cham. https://doi.org/10.1007/978-3-030-77722-7_16

Download citation

Publish with us

Policies and ethics