Skip to main content
  • 915 Accesses

Abstract

The use of Global Navigation Satellite System Radio Occultations (GNSS-RO) for vertical sounding of temperature and moisture in the atmospheric column has become a standard practice of many numerical weather prediction (NWP) centers. The introduction of this observation has seen broad positive impact on analyses and forecasts. On longer timescales the impact of the introduction of this data type in re-analyses can be clearly seen. Further, the observations can be used without bias correction and the consistency between sensors is very good allowing these observation to serve as anchoring observations. This is particularly helpful to constrain the bias-correction applied to satellite radiances. In the following chapter we explore the fundamentals of the measurement, the derivation of the typical observation which is used in NWP, the assimilation methods and error assumptions which are used, and finally some conjecture on the direction to improve the use of the observations and what future measurement systems may look like.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthes R, Rieckh T (2018) Estimating observation and model error variances using multiple data sets. Atmos Meas Techniq 11:4239–4260. https://doi.org/10.5194/amt-11-4239-2018

    Article  Google Scholar 

  • Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, Mccormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The cosmoc/formosat-3—mission early results. Bull Am Meteorol Soc 89(3):313–333. https://doi.org/10.1175/BAMS-89-3-313

  • Aparicio JM, Deblonde G (2008) Impact of the assimilation of CHAMP refractivity profiles in Environment Canada Global Forecasts. Mon Wea Rev 136:257–275. https://doi.org/10.1175/2007MWR1951.1

    Article  Google Scholar 

  • Aparicio JM, Laroche S (2011) An evaluation of the expression of the atmospheric refractivity for GPS signals. J Geophys Res 116(D11). https://doi.org/10.1029/2010JD015214

  • Bean BR, Dutton EJ (1968) Radio meteorology. Dover Publications, New York

    Google Scholar 

  • Benzon HH, Hoeg P (2016) Wave optics-based leo-leo radio occultation retrieval. Radio Sci 51(6):589–602. https://doi.org/10.1002/2015RS005852

    Article  Google Scholar 

  • Bowler NE (2020) An assessment of GNSS radio occultation data produced by spire. Q J R Meteorol Soc (2020). https://doi.org/10.1002/qj.3872

  • Cardellach E, Tomas S, Rius A, Ao CO, de la Torre-Juarez M, Padulles R, Turk FJ, Schreiner B (2018) Polarimetric gnss radio-occultations aboard paz: Commissioning phase and preliminary results. In: IGARSS 2018 - 2018 IEEE International symposium on geoscience and remote sensing IGARSS, pp. 935–937 (2018). 38th IEEE International geoscience and remote sensing symposium (IGARSS), Valencia, SPAIN, 22–27, 2018

    Google Scholar 

  • Cardinali C (2009) Monitoring the observation impact on the short-range forecast. Q J R Meteorol Soc 135(638):239–250. https://doi.org/10.1002/qj.366

    Article  Google Scholar 

  • Chen SY, Huang CY, Kuo YH, Guo YR, Sokolovskiy S (2009) Assimilation of gps refractivity from formosat-3/cosmic using a nonlocal operator with wrf 3dvar and its impact on the prediction of a typhoon event. Terrest Atmos Ocean Sci 20(1):133–154. https://doi.org/10.3319/TAO.2007.11.29.01(F3C). 6th FORMOSAT-3/COSMIC Mission Early Results Workshop, Vandenberg, CA, APR 15, 2006

  • Collard A, Healy S (2003) The combined impact of future space-based atmospheric sounding instruments on numerical weather-prediction analysis fields: A simulation study. Q J R Meteorol Soc 129(593, B):2741–2760 (2003). https://doi.org/10.1256/qj.02.124

  • Cucurull L (2012) Sensitivity of nwp model skill to the obliquity of the gps radio occultation soundings. Atmos Sci Lett 13(1):55–60. https://doi.org/10.1002/asl.363

    Article  Google Scholar 

  • Cucurull L, Derber JC, Purser RJ (2013) A bending angle forward operator for global positioning system radio occultation measurements. J Geophys Res-Atmos 118(1):14–28. https://doi.org/10.1029/2012JD017782

    Article  Google Scholar 

  • Cucurull L, Derber JC, Treadon R, Purser RJ (2007) Assimilation of global positioning system radio occultation observations into ncep’s global data assimilation system. Mon Weather Rev 135:3174–3193. https://doi.org/10.1175/MWR3461.1

    Article  Google Scholar 

  • Culverwell ID, Lewis HW, Offiler D, Marquardt C, Burrows CP (2015) The radio occultation processing package. ROPP Atmos Meas Tech 8:1887–1899. https://doi.org/10.5194/amt-8-1887-2015

    Article  Google Scholar 

  • Desroziers G, Berre L, Chapnik B, Poli P (2005) Diagnosis of observation, background and analysis-error statistics in observation space. Q J R Meteorol Soc 131(613, C):3385–3396 (2005). https://doi.org/10.1256/qj.05.108. 4th WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography, Prague, CZECH REPUBLIC, APR 18-22, 2005

  • Eyre J (1994) Assimilation of radio occultation measurements inot a numerical weather prediction system. Technical Report 199, European Centre for Medium-Range Weather Forecasts (1994)

    Google Scholar 

  • Eyre JR (2016) Observation bias correction schemes in data assimilation systems: a theoretical study of some of their properties. Q J R Meteorol Soc 142:2284–2291. https://doi.org/10.1002/qj.2819

    Article  Google Scholar 

  • Fjeldbo G, Kliore A, Eshlemen V (1971) Neutral atmosphere of venus as studied with mariner-v radio occultation experiments. Astronom J 76(2):123–124. https://doi.org/10.1086/111096

  • Gorbunov ME, Lauritsen KB (2004) Analysis of wave fields by Fourier Integral Operators and their application for radio occultations. Radio Sci 39. https://doi.org/10.1029/2003RS002971

  • Hajj G, Kursinski E, Romans L, Bertiger W, Leroy S (2002) A technical description of atmospheric sounding by gps occultation. J Atmos Solar-Terrest Phys 64(4):451–469. https://doi.org/10.1016/S1364-6826(01)00114-6

    Article  Google Scholar 

  • Harnisch F, Healy SB, Bauer P, English SJ (2013) Scaling of GNSS radio occultation impact with observation number using an ensemble of data assimilations. Mon Weather Rev 141:4395–4413

    Article  Google Scholar 

  • Healy S (2001) Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study (vol 106, pg 11,875, 2001). J Geophys Res-Atmos 106(D20):24087. https://doi.org/10.1029/2001JD001201

    Article  Google Scholar 

  • Healy S, Thepaut J (2006) Assimilation experiments with champ gps radio occultation measurements. Q J R Meteorol Soc 132(615, B):605–623. https://doi.org/10.1256/qj.04.182

  • Healy SB (2014) Implementation of the ropp two-dimensional bending angle observation operator in an nwp system. Technical report 19, EUMETSAT ROM SAF

    Google Scholar 

  • Healy SB, Eyre JR, Hamrud M, Thepaut JN (2007) Assimilating gps radio occultation measurements with two-dimensional bending angle observation operators. Q J R Meteorol Soc 133(626, A):1213–1227 (2007). https://doi.org/10.1002/qj.63

  • Hollingsworth A, Lonnberg P (1986) The statistical structure of short-range forecast errors as determined from radiosonde data 1. the wind field. Tellus A - Dyn Meteorol Oceanography 38:111–136

    Google Scholar 

  • Jensen A, Lohmann M. Benzon HH, Nielsen A (2003) Full spectrum inversion of radio occultation signals. Radio Sci 38:1040. https://doi.org/10.1029/2002RS002763

  • Jensen A, Lohmann M, Nielsen A, Benzon HH (2004) Geometrical optics phase matching of radio occultation signals. Radio Sci 39. https://doi.org/10.1029/2003RS002899

  • Kliore A, Cain D, Levy G, Eshleman V, Drake F, Fjeldbo G (1965) Mariner 4 occultation experiment. Astronaut Aeronaut 3(7):72–73

    Google Scholar 

  • Kravtsov Y, Orlov Y (1990) Radio meteorology. Springer Series on Wave Phenomena. Springer, Berlin Heidelberg

    Google Scholar 

  • Kursinski E, Hajj G, Bertiger W, Leroy S, Meehan T, Romans L, Schofield J, McCleese D, Melbourne W, Thornton C, Yunck T, Eyre J, Nagatani R (1996) Initial results of radio occultation observations of earth’s atmosphere using the global positioning system. Science 271(5252):1107–1110. https://doi.org/10.1126/science.271.5252.1107

    Article  CAS  Google Scholar 

  • Kursinski E, Hajj G, Schofield J, Linfield R, Hardy K (1997) Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res Atmos 102(D19):23429–23465. https://doi.org/10.1029/97JD01569

    Article  Google Scholar 

  • Langland R, Baker N (2004) Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus Ser A-Dyn Meteorol Oceanogr 56(3):189–201. https://doi.org/10.1111/j.1600-0870.2004.00056.x

    Article  Google Scholar 

  • Leroy S (1997) Measurement of geopotential heights by gps radio occultation. J Geophys Res Atmos 102(D6):6971–6986. https://doi.org/10.1029/96JD03083

    Article  Google Scholar 

  • Lorenc A (1986) Analysis-methods for numerical weather prediction. Q J R Meteorol Soc 112(474):1177–1194. https://doi.org/10.1002/qj.49711247414

  • Luntama JP, Kirchengast G, Borsche M, Foelsche U, Steiner A, Healy S, von Engeln A, O’Clerigh E, Marquardt C (2008) Prospects of the eps gras mission for operational atmospheric applications. Bull Am Meteorol Soc 89(12):1863+. https://doi.org/10.1175/2008BAMS2399.1

  • Melbourne W, Davis E, Duncan C, Hajj G, Hardy K, Kursinski E, Meehan T, Young L (1994) The application of spaceborne gps to atmospheric limb sounding and global change monitoring. Technical Report 94-18, National Aeronautics and Space Administration

    Google Scholar 

  • NOAA / NESDIS: Commercial Weather Data Pilot (CWDP) Round 2 Summary. https://www.space.commerce.gov/wp-content/uploads/2020-06-cwdp-round-2-summary.pdf (2020)

  • Poli P, Moll P, Puech D, Rabier F, Healy SB (2009) Quality control, error analysis, and impact assessment of formosat-3/cosmic in numerical weather prediction. Terrest Atmos Ocean Sci 20(1):101–113. https://doi.org/10.3319/TAO.2008.01.21.02(F3C). 6th FORMOSAT-3/COSMIC Mission Early Results Workshop, Vandenberg, CA, APR 15, 2006

  • Rennie MP (2010) The impact of gps radio occultation assimilation at the met office. Q J R Meteorol Soc 136(646, A):116–131. https://doi.org/10.1002/qj.521

  • Rocken C, Anthes R, Exner M, Hunt D, Sokolovskiy S, Ware R, Gorbunov M, Schreiner W, Feng D, Herman B, Kuo Y, Zou X (1997) Analysis and validation of gps/met data in the neutral atmosphere. J Geophys Res Atmos 102(D25):29849–29866. https://doi.org/10.1029/97JD02400

    Article  Google Scholar 

  • Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. Ser Atmos Ocean Planetery Phys. World Scientific (2000). https://doi.org/10.1142/3171

  • Scherllin-Pirscher B, Steiner AK, Kirchengast G, Kuo YH, Foelsche U (2011) Empirical analysis and modeling of errors of atmospheric profiles from gps radio occultation. Atmos Meas Techniq 4:1875–1890. https://doi.org/10.5194/amt-4-1875-2011

    Article  Google Scholar 

  • Schreiner WS, Weiss JP, Anthes RA, Braun J, Chu V, Fong J, Hunt D, Kuo YH, Meehan T, Serafino W, Sjoberg J, Sokolovskiy S, Talaat E, Wee TK, Zeng Z (2020) Cosmic-2 radio occultation constellation: First results. Geophys Res Lett 47(4). https://doi.org/10.1029/2019GL086841

  • Shao H, Zou X, Hajj GA (2009) Test of a non-local excess phase delay operator for gps radio occultation data assimilation. J Appl Remote Sens 3

    Google Scholar 

  • Sokolovskiy S, Kuo Y, Wang W (2005) Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: Case simulations with a high-resolution weather model. Mon Weather Rev 133(8)

    Google Scholar 

  • Solheim F, Vivekanandan J, Ware R, Rocken C (1999) Propagation delays induced in gps signals by dry air, water vapor, hydrometeors, and other particulates. J Geophys Res Atmos 104(D8):9663–9670. https://doi.org/10.1029/1999JD900095

    Article  Google Scholar 

  • Syndergaard S, Kursinsi E, Herman B, Lane E, Flittnerm D (2005) Refractive index mapping operator for assimilation of occultation data. Mon Weather Rev 133(11):2650

    Article  Google Scholar 

  • Vorobev V, Krasilnikova T (1994) USSR Phys Atmos Ocean 29

    Google Scholar 

  • Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo Y, Meehan T, Melbourne W, Rocken C, Schreiner W, Sokolovskiy S, Solheim F, Zou X, Anthes R, Businger S, Trenberth K (1996) Gps sounding of the atmosphere from low earth orbit: Preliminary results. Bull Am Meteorol Soc 77(1):19–40. https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2

  • Wee TK, Kuo YH, Lee DK (2010) Development of a curved ray tracing method for modeling of phase paths from gps radio occultation: a two-dimensional study. J Geophys Res Atmos 115. https://doi.org/10.1029/2010JD014419

  • Wickert J, Reigber C, Beyerle G, Konig R, Marquardt C, Schmidt T, Grunwaldt L, Galas R, Meehan T, Melbourne W, Hocke K (2001) Atmosphere sounding by gps radio occultation: first results from champ. Geophys Res Lett 28(17):3263–3266. https://doi.org/10.1029/2001GL013117

    Article  Google Scholar 

  • Xie F, Haase JS, Syndergaard S (2008) Profiling the atmosphere using the airborne gps radio occultation technique: a sensitivity study. IEEE Trans Geosci Remote Sens 46(11, 1):3424–3435. https://doi.org/10.1109/TGRS.2008.2004713

  • Yunck T, Liu C, Ware R (2000) A history of gps sounding. Terrest Atmos Ocean Sci 11(1):1–20. https://doi.org/10.3319/TAO.2000.11.1.1(COSMIC)

    Article  Google Scholar 

  • Zou X, Liu H, Anthes R (2002) A statistical estimate of errors in the calculation of radio-occultation bending angles caused by a 2d approximation of ray tracing and the assumption of spherical symmetry of the atmosphere. J Atmos Ocean Technol 19(1):51–64. https://doi.org/10.1175/1520-0426

    Article  Google Scholar 

  • Zou X, Vandenberghe F, Wang B, Gorbunov M, Kuo Y, Sokolovskiy S, Chang J, Sela J, Anthes R (1999) A ray-tracing operator and its adjoint for the use of gps/met refraction angle measurements. J Geophys Res Atmos 104(D18):22301–22318. https://doi.org/10.1029/1999JD900450

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Public Weather Service (PWS) at the Met Office, UK; and by the Office of Naval Reserach. Sean Healy thanks Dr Katrin Lonitz (ECMWF) for help with Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ruston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Ruston, B., Bowler, N., Healy, S., Shao, H. (2022). GNSS-RO Sounding in the Troposphere and Stratosphere. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV). Springer, Cham. https://doi.org/10.1007/978-3-030-77722-7_13

Download citation

Publish with us

Policies and ethics