Skip to main content

Structural Stability of Nonlinear Elliptic p(u)-Laplacian Problem with Robin Type Boundary Condition

  • Chapter
  • First Online:
Studies in Evolution Equations and Related Topics

Abstract

We study in this chapter the following nonlinear elliptic boundary value problem,

$$\displaystyle b(u)-\mbox{div}a(x,u,\nabla u)=f\qquad \qquad \mbox{in}\qquad \qquad \Omega ,\qquad \qquad a(x,u,\nabla u).\eta =-|u|{ }^{r(x,u)-2}u\qquad \qquad \mbox{on}\qquad \qquad \partial \Omega , $$

where Ω is a bounded open domain in \(\mathbb {R}^{N}\), N ≥ 3, with smooth boundary  Ω. We prove the existence and uniqueness of weak solution for f ∈ L1( Ω) and structural stability result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Andreianov, M. Bendahmane, S. Ouaro; Structural stability for variable exponent elliptic problems. I. Thep(x)-Laplacian kind problems, Nonlinear Analysis, 73 (2010), 2–24.

    Article  MathSciNet  Google Scholar 

  2. B. Andreianov, M. Bendahmane, S. Ouaro; Structural stability for variable exponent elliptic problems, II: Thep(u)-Laplacian and coupled problems, Nonlinear Analysis, 72 (2010), 4649–4660.

    Article  MathSciNet  Google Scholar 

  3. B. Andreianov, F. Bouhsiss; Uniqueness for an elliptic parabolic problem with Neumann boundary condition, J. Evol. Equ. 4 (2) (2004) 273–295.

    Article  MathSciNet  Google Scholar 

  4. S.N. Antontsev, J.F. Rodrigues; On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (1) (2006), 19–36.

    Article  MathSciNet  Google Scholar 

  5. E. Azroul, A. Barbara, M.B. Benboubker and S. Ouaro; Renormalized solutions for ap(x)-Laplacian equation with Neumann nonhomogeneous boundary conditions andL1-data Ann. Univ. Craiova. Math. Inform., 40 (1) (2013), 9–22.

    MATH  Google Scholar 

  6. J.M. Ball; A version of the fundamental theorem for Young measures. PDEs and continuum models of phase transitions (Nice, 1988), 207–215, Lecture Notes in Phys., 344, Springer, 1989.

    Google Scholar 

  7. M.B. Benboubker, S. Ouaro, U. Traoré; Entropy solutions for nonhomogeneous Neumann problems involving the generalizedp(x)-Laplacian operators and measure data, Journal of Nonlinear Evolution Equation and Application. Volume 2014, Number 5, pp. 53–76 (2015).

    MATH  Google Scholar 

  8. Y. Chen, S. Levine, M. Rao; Variable exponent, linear growth functionals in image restoration. SIAM. J.Appl. Math., 66 (2006), 1383–1406.

    Article  MathSciNet  Google Scholar 

  9. G. Dolzmann, N. Hungerbühler, S. Müller; Thep-harmonic system with measure-valued right hand side, Ann. Inst. H. Poincaré. Anal. Non Linéaire 14 (3) (1997), 353–364.

    Article  MathSciNet  Google Scholar 

  10. R. Eymard, T. Gallouët and R. Herbin; Finite volume methods. Handbook of numerical analysis, Vol. VII, 713–1020, North-Holland, 2000.

    Google Scholar 

  11. N. Hungerbühler; Quasi-linear parabolic systems in divergence form with weak monotonicity, Duke Math. J. 107 (3) (2001), 497–520.

    Article  MathSciNet  Google Scholar 

  12. N. Hungerbühler; A refinement of Ball’s theorem on Young measures. New York J. Math. 3 (1997), 48–53.

    MathSciNet  MATH  Google Scholar 

  13. J.-L. Lions; Quelques méthodes de résolution de problèmes aux limites nonlinéaires, Dunod. Gauthier-Villars, Paris, 1969.

    MATH  Google Scholar 

  14. S. Ouaro, A Tchousso; Well-posedness result for a nonlinear elliptic problem involving variable exponent and Robin type boundary condition, African Diaspora Journal of Mathematics 11, No. 2, 36–64 (2011).

    Google Scholar 

  15. P. Pedregal; Parametrized measures and variational principles. Progress in Nonlinear Differential Equations and their Applications, 30. Birkhäuser, Basel, 1997.

    Google Scholar 

  16. M. Ruzicka; Electrorheological fluids: modelling and mathematical theory. Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2002.

    Google Scholar 

  17. R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, 49, American Mathematical Society.

    Google Scholar 

  18. L. Wang, Y. Fan, W. Ge; Existence and multiplicity of solutions for a Neumann problem involving thep(x) −Laplace operator . Nonlinear Anal. 71 (2009), 4259–4270.

    Article  MathSciNet  Google Scholar 

  19. J. Yao; Solutions for Neumann boundary value problems involving p(x)-Laplace operator. Nonlinear Anal (TMA) 68(2008), 1271–1283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ouaro, S., Sawadogo, N. (2021). Structural Stability of Nonlinear Elliptic p(u)-Laplacian Problem with Robin Type Boundary Condition. In: N'Guérékata, G.M., Toni, B. (eds) Studies in Evolution Equations and Related Topics. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-77704-3_5

Download citation

Publish with us

Policies and ethics