Skip to main content

Explicit Connections Between Supersingular Isogeny Graphs and Bruhat–Tits Trees

  • Chapter
  • First Online:
Women in Numbers Europe III

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 24))

  • 351 Accesses

Abstract

In this paper we give an exposition of supersingular isogeny graphs, quaternion ideal graphs and Bruhat–Tits trees, and of their connections. Bruhat–Tits trees are combinatorial objects whose vertices and edges have a very simple representation as two-by-two matrices, which, as we show, is useful for understanding certain aspects of the corresponding elliptic curves and isogenies. Moreover, Bruhat–Tits trees can be given an orientation and a notion of depth that we translate into the setting of supersingular isogeny graphs. We give some suggestions towards using Bruhat–Tits trees as a tool for cryptanalysis of certain cryptosystems based on supersingular isogeny graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See e.g. [40, Theorem 4.1].

  2. 2.

    Pizer [35] used this description of supersingular isogeny graphs to prove the Ramanujan property when p ≡ 1 (mod  12).

  3. 3.

    See [29, 5] for a more rigorous introduction.

  4. 4.

    We are using the prime to be consistent with the isogeny graphs to which we want to connect this theory. In the Shimura curves literature, p is widely used as the chosen prime, so p-adic upper half-plane is more standard.

  5. 5.

    Although we will focus at first on the SIKE parameters, it could be that the most interesting case occurs for a different parameter set within the SIDH family of protocols.

References

  1. Amorós, L., Milione, P.: Mumford curves covering p-adic Shimura curves and their fundamental domains. Trans. Amer. Math. Soc. 371(2), 1119–1149 (2019)

    Article  MathSciNet  Google Scholar 

  2. Arpin, S., Camacho-Navarro, C., Lauter, K., Lim, J., Nelson, K., Scholl, T., Sotáková, J.: Adventures in Supersingularland. Preprint at https://eprint.iacr.org/2019/1056 (2019)

  3. Azarderakhsh, R., Koziel, B., Campagna, M., LaMacchia, B., Costello, C., Longa, P., De Feo, L., Naehrig, M., Hess, B., Renes, J., Jalali, A., Soukharev, V., Jao, D., Urbanik, D.: Supersingular Isogeny Key Encapsulation. Available at http://sike.org (2017)

  4. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient Isogeny Based Signatures Through Class Group Computations. In: Galbraith, S. D., Moriai, S. (eds.) Advances in Cryptology – ASIACRYPT 2019, Lecture Notes in Comp. Sci, vol. 11921, pp. 227–247. Springer (2019)

    Google Scholar 

  5. Boutot, J.-F., Carayol, H.: Uniformisation p-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld. Astérisque 196–197, 45–158 (1991)

    MATH  Google Scholar 

  6. Brandt, H.: Zur Zahlentheorie der Quaternionen. Jahresbericht der Deutschen Mathematiker-Vereinigung 53, 23–57 (1943)

    MathSciNet  MATH  Google Scholar 

  7. Castryck, W., Decru, T.: CSIDH on the Surface. In: Ding, J., Tillich, J.-P. (eds.) Post-Quantum Cryptography, Security and Cryptology, vol. 12100, pp. 111–129. Springer (2020)

    Google Scholar 

  8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An Efficient Post-Quantum Commutative Group Action. In: Peyrin, P., Galbraith, S. (eds.) Advances in Cryptology – ASIACRYPT 2018, Lecture Notes in Comp. Sci, vol. 11274, pp. 395–427. Springer (2018)

    Google Scholar 

  9. Čerednik, I.V.: Uniformization of algebraic curves by discrete arithmetic subgroups of PGL2(k w) with compact quotients. Math. USSR Sbornik 29(1), 55–78 (1976)

    Article  MathSciNet  Google Scholar 

  10. Charles, D.X., Goren, E.Z., Lauter, K.E.: Cryptographic hash functions from expander graphs. Preprint available at https://eprint.iacr.org/2006/021 (2006)

  11. Charles, D.X., Goren, E.Z., Lauter, K.E.: Cryptographic hash functions from expander graphs. Journal of Cryptology 22(1), 93–113 (2009)

    Article  MathSciNet  Google Scholar 

  12. Charles, D.X., Goren, E.Z., Lauter, K.E.: Families of Ramanujan graphs and quaternion algebras. In: Harnad, J., Winternitz, P. (eds.) Groups and symmetries. CRM Proc. Lecture Notes, vol. 47, pp. 53–80. Amer. Math. Soc. (2009)

    Google Scholar 

  13. Costache, A., Feigon, B., Lauter, K., Massierer, M., Puskas, A.: Ramanujan Graphs in Cryptography. In: Balakrishnan, J., Folsom, A., Lalín, M., Manes, M. (eds) Research Directions in Number Theory, Association for Women in Mathematics Series, vol 19, pp. 1–40. Springer (2018)

    Google Scholar 

  14. Couveignes, J.-M.: Hard Homogeneous Spaces. Preprint at https://ia.cr/2006/291 (2006)

  15. De Feo, L.: Exploring Isogeny Graphs. Habilitation Thesis (2018)

    Google Scholar 

  16. De Feo, L., Kieffer, J., Smith, B.: Towards Practical Key Exchange from Ordinary Isogeny Graphs. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology – ASIACRYPT 2018. Lecture Notes in Comp. Sci., vol 11274, pp. 365–394. Springer (2018)

    Google Scholar 

  17. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ 14, 197–272 (1941)

    Article  MathSciNet  Google Scholar 

  18. Drinfel’d, V.G.: Coverings of p-adic symmetric regions. Functional Analysis and Its Applications 10(2), 107–115 (1976)

    Article  Google Scholar 

  19. Eisentraeger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018. Lecture Notes in Comp. Sci., vol 10822, pp. 329–368. Springer (2018)

    Google Scholar 

  20. Franc, C., Masdeu, M.: Computing fundamental domains for the Bruhat–Tits tree for \(\mathrm {GL}_2(\mathbb {Q}_p)\), p-adic automorphic forms, and the canonical embedding of Shimura curves. LMS Journal of Computation and Mathematics 17(1), 1–23 (2014)

    Google Scholar 

  21. Franc, C., Masdeu, M.: BTQuotient package. Available at https://github.com/mmasdeu/btquotients

  22. Franc, C., Masdeu, M.: BTQuotient Module. Available at https://doc.sagemath.org/html/en/reference/modsym/sage/modular/btquotients/btquotient.html

  23. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B. Y.(eds.) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Comp. Sci., vol 707, pp. 19–34. Springer (2011)

    Google Scholar 

  24. Jordan, B.W., Livné, R.: Local diophantine properties of Shimura curves. Math. Ann. 270(2), 235–248 (1984)

    Article  MathSciNet  Google Scholar 

  25. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. PhD Thesis of the University of California at Berkely (1996)

    Google Scholar 

  26. Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion -isogeny path problem. LMS Journal of Computation and Mathematics 17, 418–432 (2014)

    Article  MathSciNet  Google Scholar 

  27. Kurihara, A.: On some examples of equations defining Shimura curves and the Mumford uniformization. J. Fac. Sci. Univ. Tokyo, Sect. IA Math 25(3), 277–300 (1979)

    Google Scholar 

  28. Kutas, P., Martindale, C., Panny, L., Petit, C., Stange, K.E.: Weak instances of SIDH variants under improved torsion-point attacks. Preprint at https://eprint.iacr.org/2020/633 (2020)

  29. Milione, P.: Shimura curves and their p-adic uniformizations. PhD Thesis of the Universitat de Barcelona (2015)

    Google Scholar 

  30. Morita, Y.: Reduction mod of Shimura curves. Hokkaido Math. J 10(2), 209–238 (1981)

    Google Scholar 

  31. National Institute of Standards and Technology. Post-quantum cryptography standardization (December 2016)

    Google Scholar 

  32. Onuki, H., Aikawa, Y., Takagi, T.: The Existence of Cycles in the Supersingular Isogeny Graphs Used in SIKE. In: Proceedings of 2020 International Symposium on Information Theory and its Applications, ISITA 2020, pp. 358–362, 9366119 (2020)

    Google Scholar 

  33. Petit, C.: Faster Algorithms for Isogeny Problems Using Torsion Point Images. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology ASIACRYPT 2017. Lecture Notes in Comp. Sci., vol 10625, pp. 330–353. Springer (2017)

    Google Scholar 

  34. Pizer, A.: An Algorithm for Computing Modular Forms on Γ0(N). Journal of Algebra 64(2), 340–390 (1980)

    Article  MathSciNet  Google Scholar 

  35. Pizer, A.: Ramanujan graphs and Hecke operators. Bull. Amer. Math. Soc. (N.S.) 23(1), 127–137 (1990)

    Google Scholar 

  36. Ribet, K.A.: On modular representations of \(\mathrm {Gal}(\overline {\mathbb {Q}}/\mathbb {Q})\) arising from modular forms. Invent. Math 100(2), 431–476 (1990)

    Google Scholar 

  37. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Preprint at https://ia.cr/2006/145 (2006)

  38. Serre, J.-P.: Arbres, amalgames, SL2. Société Mathèmatique de France (1977)

    Google Scholar 

  39. Shimura, G.: Construction of Class Fields and Zeta Functions of Algebraic Curves. Ann. of Math. 85(1), 58–159 (1967)

    Article  MathSciNet  Google Scholar 

  40. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd Edition. Springer (2009)

    Google Scholar 

  41. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des Sciences de Paris 273, 238–241 (1971)

    MathSciNet  MATH  Google Scholar 

  42. Vignéras, M.-F.: Arithmátique des algèbres de quaternions. Springer (1980)

    Google Scholar 

  43. Voight, J.: Quaternion Algebras, v.0.9.22. Available at https://math.dartmouth.edu/~jvoight/quat.html (2020)

Download references

Acknowledgements

We want to thank the organisers of the Women in Numbers Europe 3 conference for giving us the opportunity to work on this project. We also wish to thank the anonymous reviewers for their helpful comments.

Jana Sotáková, as well as a follow up visit of Laia Amorós, Annamaria Iezzi and Chloe Martindale at the CWI in Amsterdam, were supported by the Dutch Research Council (NWO) through Gravitation-grant Quantum Software Consortium—024.003.037. Laia Amorós was supported by Academy of Finland grant #282938 and by Helsinki Institute for Information Technology HIIT. Chloe Martindale was partially supported by CHIST-ERA USEIT (NWO project 651.002.004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloe Martindale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amorós, L., Iezzi, A., Lauter, K., Martindale, C., Sotáková, J. (2021). Explicit Connections Between Supersingular Isogeny Graphs and Bruhat–Tits Trees. In: Cojocaru, A.C., Ionica, S., García, E.L. (eds) Women in Numbers Europe III. Association for Women in Mathematics Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-77700-5_2

Download citation

Publish with us

Policies and ethics