Skip to main content

Introduction and Literature Review of the Application of Machine Learning/Deep Learning to Control Problems of Power Systems

  • Chapter
  • First Online:
Application of Machine Learning and Deep Learning Methods to Power System Problems

Part of the book series: Power Systems ((POWSYS))

  • 1255 Accesses

Abstract

The main goal of controlling an electrical energy system is generating electricity and creating a reliable interconnected system where it maintains the voltage and frequency in an allowable range. Also, increasing the use of renewable distributed energy sources, the integration of various measurement, monitoring, control, and communication infrastructures in the network of modern power systems, provides an occasion to build an efficient and resilient network. On the other hand, due to the increasing size, the dimension of data, complexity, and uncertainty of the modern power system, traditional methods sometimes do not overcome the control issues of a power system. Also, timely evaluation of the power system situation requires adequate response time and reasonable performance to allow controllers and network operators to take preventive and/or corrective actions. Therefore, the need to select efficient methods for faster discovering and identification of power system control problems have always been a priority. In this regard, machine learning and deep learning methods are used to predict events, the amount of variables, and states, their classifications, and features selection when confronted with power system control problems in prevention, normal, emergency, and restoration modes. Machine learning methods are used to extract patterns and order in data to analyze, process, predict, and categorize large data related to the assessment of complex issues of power system dynamical security in order to maintain reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DOE-USA, Chapter 5: Increasing efficiency of buildings systems and technologies, in The Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities (2015)

    Google Scholar 

  2. R. Yousefian, R. Bhattarai, S. Kamalasadan, Transient stability enhancement of power grid with integrated wide area control of wind farms and synchronous generators. IEEE Trans. Power Syst. (2017). https://doi.org/10.1109/TPWRS.2017.2676138

  3. P. Kofinas, S. Doltsinis, A.I. Dounis, G.A. Vouros, A reinforcement learning approach for MPPT control method of photovoltaic sources. Renew. Energy 108, 461–473 (2017). https://doi.org/10.1016/j.renene.2017.03.008

    Article  Google Scholar 

  4. A. Rosato, M. Panella, R. Araneo, A. Andreotti, A Neural Network Based Prediction System of Distributed Generation for the Management of Microgrids. IEEE Trans. Ind. Appl. 55, 922 (2019). https://doi.org/10.1109/TIA.2019.2916758

    Article  Google Scholar 

  5. X. Xu, Y. Xu, M.-H. Wang, J. Li, Z. Xu, S. Chai, Y. He, Data-driven game-based pricing for sharing rooftop photovoltaic generation and energy storage in the residential building cluster under uncertainties. IEEE Trans. Ind. Informat. (2020). https://doi.org/10.1109/tii.2020.3016336

  6. H. Jahangir, S.S. Gougheri, B. Vatandoust, M.A. Golkar, A. Ahmadian, A. Hajizadeh, Plug-in electric vehicle behavior modeling in energy market: a novel deep learning-based approach with clustering technique. IEEE Trans. Smart Grid (2020). https://doi.org/10.1109/tsg.2020.2998072

  7. R. Badar, M.Z. Khan, M.A. Javed, MIMO adaptive bspline-based wavelet neurofuzzy control for multi-type facts. IEEE Access 8 (2020). https://doi.org/10.1109/ACCESS.2020.2969387

  8. S. Lan, M.J. Chen, D.Y. Chen, A novel HVDC double-terminal non-synchronous fault location method based on convolutional neural network. IEEE Trans. Power Deliv. 34 (2019). https://doi.org/10.1109/TPWRD.2019.2901594

  9. G.K. Venayagamoorthy, R.K. Sharma, P.K. Gautam, A. Ahmadi, Dynamic energy management system for a smart microgrid. IEEE Trans. Neural Netw. Learn. Syst. (2016). https://doi.org/10.1109/TNNLS.2016.2514358

  10. Y. Li, Z. Yang, Application of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU data. IEEE Access 5 (2017). https://doi.org/10.1109/ACCESS.2017.2765626

  11. J. Gao, L. Gan, F. Buschendorf, L. Zhang, H. Liu, P. Li, X. Dong, T. Lu, Omni SCADA intrusion detection using deep learning algorithms. IEEE Internet Things J. (2020). https://doi.org/10.1109/jiot.2020.3009180

  12. E. Hossain, I. Khan, F. Un-Noor, S.S. Sikander, M.S.H. Sunny, Application of big data and machine learning in smart grid, and associated security concerns: a review. IEEE Access 7 (2019)

    Google Scholar 

  13. O.A. Alimi, K. Ouahada, A.M. Abu-Mahfouz, A review of machine learning approaches to power system security and stability. IEEE Access 8 (2020)

    Google Scholar 

  14. L.A. Wehenkel, Automatic learning techniques in power systems (1998)

    Google Scholar 

  15. M. Kalech, Cyber-attack detection in SCADA systems using temporal pattern recognition techniques. Comput. Secur. 84 (2019). https://doi.org/10.1016/j.cose.2019.03.007

  16. P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1993)

    Google Scholar 

  17. A. Dissanayaka, U.D. Annakkage, B. Jayasekara, B. Bagen, Risk-based dynamic security assessment. IEEE Trans. Power Syst. 26 (2011). https://doi.org/10.1109/TPWRS.2010.2089809

  18. L. Wang, P. Pourbeik, Assessment of power system stability and dynamic security performance, in Power System Stability and Control, 3rd edn. (CRC Press, 2017)

    Google Scholar 

  19. P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. Van Cursem, V. Vittal, Definition and classification of power system stability. IEEE Trans. Power Syst. 19 (2004). https://doi.org/10.1109/TPWRS.2004.825981

  20. M. Glavic, (Deep) reinforcement learning for electric power system control and related problems: a short review and perspectives. Annu. Rev. Control 48, 22–35 (2019)

    Article  MathSciNet  Google Scholar 

  21. X. Wang, X. Luo, M. Zhang, X. Guan, Distributed detection and isolation of false data injection attacks in smart grids via nonlinear unknown input observers. Int. J. Electr. Power Energy Syst. 110 (2019). https://doi.org/10.1016/j.ijepes.2019.03.008

  22. C.C. Aggarwal, Neural networks and deep learning (2018)

    Google Scholar 

  23. E. Alpaydin, Introduction to Machine Learning, 3rd edn. (2014)

    MATH  Google Scholar 

  24. Miraftabzadeh SM, Foiadelli F, Longo M, Pasetti M (2019) A survey of machine learning applications for power system analytics. In: Proceedings - 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019

    Google Scholar 

  25. P. Mehta, M. Bukov, C.-H. Wang, A.G.R. Day, C. Richardson, C.K. Fisher, D.J. Schwab Review machine learning. arXiv:180308823 [cond-mat, physics:Physics, stat]. (2018). https://doi.org/arXiv:1803.08823v1

  26. M. Glavic, R. Fonteneau, D. Ernst Reinforcement learning for electric power system decision and control: past considerations and perspectives. IFAC-Papers OnLine. (2017) https://doi.org/10.1016/j.ifacol.2017.08.1217

  27. H. Mohammadi, M. Dehghani, PMU based voltage security assessment of power systems exploiting principal component analysis and decision trees. Int. J. Electr. Power Energy Syst. 64 (2015). https://doi.org/10.1016/j.ijepes.2014.07.077

  28. S. Zhang, Y. Wang, M. Liu, Z. Bao, Data-based line trip fault prediction in power systems using LSTM networks and SVM. IEEE Access 6 (2017). https://doi.org/10.1109/ACCESS.2017.2785763

  29. Y. Dai, Y. Xu, Z.Y. Dong, K.P. Wong, L. Zhuang, Real-time prediction of event-driven load shedding for frequency stability enhancement of power systems. IET Gener. Transm. Distrib. 6 (2012). https://doi.org/10.1049/iet-gtd.2011.0810

  30. H. Hagmar, L. Tong, R. Eriksson, L.A. Tuan, Voltage instability prediction using a deep recurrent neural network. (2019). https://doi.org/10.1109/TPWRS.2020.3008801

  31. H. Yang, W. Zhang, F. Shi, J. Xie, W. Ju, PMU-based model-free method for transient instability prediction and emergency generator-shedding control. Int. J. Electr. Power Energy Syst. 105 (2019). https://doi.org/10.1016/j.ijepes.2018.08.031

  32. S. Wen, Y. Wang, Y. Tang, Y. Xu, P. Li, Proactive frequency control based on ultra-short-term power fluctuation forecasting for high renewables penetrated power systems. IET Renew. Power Gener. 13 (2019). https://doi.org/10.1049/iet-rpg.2019.0234

  33. Y. Xu, Z.Y. Dong, K. Meng, R. Zhang, K.P. Wong, Real-time transient stability assessment model using extreme learning machine. IET Gener. Transm. Distrib. 5 (2011). https://doi.org/10.1049/iet-gtd.2010.0355

  34. B.P. Soni, A. Saxena, V. Gupta, S.L. Surana, Identification of generator criticality and transient instability by supervising real-time rotor angle trajectories employing RBFNN. ISA Trans. (2018). https://doi.org/10.1016/j.isatra.2018.08.008

  35. J. Morales, E. Orduña, H. Villarroel, J.C. Quispe, High-speed directional protection without voltage sensors for distribution feeders with distributed generation integration based on the correlation of signals and machine learning. Electr. Power Syst. Res. 184 (2020). https://doi.org/10.1016/j.epsr.2020.106295

  36. Y.J. Lin, Comparison of CART- and MLP-based power system transient stability preventive control. Int. J. Electr. Power Energy Syst. 45 (2013). https://doi.org/10.1016/j.ijepes.2012.08.066

  37. B.P. Soni, A. Saxena, V. Gupta, S.L. Surana, Transient stability-oriented assessment and application of preventive control action for power system. J. Eng. 2019 (2019). https://doi.org/10.1049/joe.2018.9353

  38. R. Dubey, S.R. Samantaray, B.K. Panigrahi, An extreme learning machine based fast and accurate adaptive distance relaying scheme. Int. J. Electr. Power Energy Syst. (2015). https://doi.org/10.1016/j.ijepes.2015.06.024

  39. S. Li, V. Ajjarapu, M. Djukanovic, Adaptive online monitoring of voltage stability margin via local regression. IEEE Trans. Power Syst. 33 (2017). https://doi.org/10.1109/tpwrs.2017.2698065

  40. S. Wen, T. Zhao, Y. Wang, Y. Tang, Y. Xu, P. Li, A deep learning method for power fluctuation identification from frequency fluctuations, in IEEE Power and Energy Society General Meeting, (2019)

    Google Scholar 

  41. D.K. Chaturvedi, O.P. Malik, Generalized neuron-based adaptive PSS for multimachine environment. IEEE Trans. Power Syst. 20 (2005). https://doi.org/10.1109/TPWRS.2004.840410

  42. H. Liu, F. Hussain, Y. Shen, R. Morales-Menendez, M. Abubakar, S. Junaid Yawar, H.J. Arain, Signal processing and deep learning techniques for power quality events monitoring and classification. Electr. Power Components Syst. (2019). https://doi.org/10.1080/15325008.2019.1666178

  43. Y. Chen, M. Mazhari, C.Y. Chung, S.O. Faried, B.C. Pal, Rotor angle stability prediction of power systems with high wind power penetration using a stability index vector. IEEE Trans. Power Syst. (2020). https://doi.org/10.1109/tpwrs.2020.2989725

  44. R. Lu, S.H. Hong, Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Appl. Energy (2019). https://doi.org/10.1016/j.apenergy.2018.12.061

  45. A unified time scale intelligent control algorithm for micro grid based on extreme dynamic programming. CSEE J. Power Energy Syst. (2019). https://doi.org/10.17775/cseejpes.2019.00100

  46. B. Wang, B. Fang, Y. Wang, H. Liu, Y. Liu, Power system transient stability assessment based on big data and the core vector machine. IEEE Trans. Smart Grid 7 (2016). https://doi.org/10.1109/TSG.2016.2549063

  47. T. Shi, Y. He, T. Wang, B. Li, Open switch fault diagnosis method for PWM voltage source rectifier based on deep learning approach. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2917311

  48. M. Tasdighi, M. Kezunovic, Preventing transmission distance relays maloperation under unintended bulk DG tripping using SVM-based approach. Electr. Power Syst. Res. 142 (2017). https://doi.org/10.1016/j.epsr.2016.09.024

  49. Y. Liu, Y. Liu, J. Liu, M. Li, T. Liu, G. Taylor, K. Zuo, A MapReduce based high performance neural network in enabling fast stability assessment of power systems. Math. Probl. Eng. (2017). https://doi.org/10.1155/2017/4030146

  50. S.S. Maaji, G. Cosma, A. Taherkhani, A.A. Alani, T.M. McGinnity, On-line voltage stability monitoring using an ensemble AdaBoost classifier, in 2018 4th International Conference on Information Management, (ICIM, 2018, 2018)

    Google Scholar 

  51. R.A. Sowah, N.A. Dzabeng, A.R. Ofoli, A. Acakpovi, K.M. Koumadi, J. Ocrah, D. Martin, Design of power distribution network fault data collector for fault detection, location and classification using machine learning, in IEEE International Conference on Adaptive Science and Technology, ICAST, (2018)

    Google Scholar 

  52. D. Wang, M. Glavic, L. Wehenkel, Trajectory-based supplementary damping control for power system electromechanical oscillations. IEEE Trans. Power Syst. 29 (2014). https://doi.org/10.1109/TPWRS.2014.2314359

  53. T.N. Le, N.A. Nguyen, H.A. Quyen, Emergency control of load shedding based on coordination of artificial neural network and analytic hierarchy process algorithm, in Proceedings - 2017 International Conference on System Science and Engineering, ICSSE 2017, (2017)

    Google Scholar 

  54. C. Chen, M. Cui, F.F. Li, S. Yin, X. Wang, Model-free emergency frequency control based on reinforcement learning. IEEE Trans. Ind. Informat. (2020). https://doi.org/10.1109/tii.2020.3001095

  55. Y. Xu, R. Zhang, J. Zhao, Z.Y. Dong, D. Wang, H. Yang, K.P. Wong, Assessing short-term voltage stability of electric power systems by a hierarchical intelligent system. IEEE Trans. Neural Netw. Learn. Syst. (2016). https://doi.org/10.1109/TNNLS.2015.2441706

  56. M. Manohar, E. Koley, S. Ghosh, Enhancing the reliability of protection scheme for PV integrated microgrid by discriminating between array faults and symmetrical line faults using sparse auto encoder. IET Renew. Power Gener. 13 (2019). https://doi.org/10.1049/iet-rpg.2018.5627

  57. M.R. Alam, K.M. Muttaqi, A. Bouzerdoum, Evaluating the effectiveness of a machine learning approach based on response time and reliability for islanding detection of distributed generation. IET Renew. Power Gener. 11 (2017). https://doi.org/10.1049/iet-rpg.2016.0987

  58. S. Zarrabian, R. Belkacemi, A.A. Babalola, Real-time smart grids control for preventing cascading failures and blackout using neural networks: experimental approach for N-1-1 contingency. Int. J. Emerg. Electr. Power Syst. (2016). https://doi.org/10.1515/ijeeps-2016-0039

  59. R. Yousefian, S. Kamalasadan, Energy function inspired value priority based global wide-area control of power grid. IEEE Trans. Smart Grid (2018). https://doi.org/10.1109/TSG.2016.2555909

  60. S.S. Jhang, H.J. Lee, C.N. Kim, C.H. Song, W.K. Yu, ANN Control for damping low-frequency oscillation using deep learning, in Australasian Universities Power Engineering Conference, AUPEC 2018, (2018)

    Google Scholar 

  61. J.D. Pinzón, D.G. Colomé, Real-time multi-state classification of short-term voltage stability based on multivariate time series machine learning. Int. J. Electr. Power Energy Syst. (2019). https://doi.org/10.1016/j.ijepes.2019.01.022

  62. I. Genc, R. Diao, V. Vittal, S. Kolluri, S. Mandal, Decision tree-based preventive and corrective control applications for dynamic security enhancement in power systems. IEEE Trans. Power Syst. (2010). https://doi.org/10.1109/TPWRS.2009.2037006

  63. Q. Li, Y. Xu, C. Ren, A hierarchical data-driven method for event-based load shedding against fault-induced delayed voltage recovery in power systems. IEEE Trans. Ind. Informat. (2020). https://doi.org/10.1109/tii.2020.2993807

  64. D. Ye, M. Zhang, D. Sutanto, A hybrid multiagent framework with Q-learning for power grid systems restoration. IEEE Trans. Power Syst. (2011). https://doi.org/10.1109/TPWRS.2011.2157180

  65. M. Al Karim, J. Currie, T.T. Lie, A feature based distributed machine learning for post fault restoration of a microgrid under different stochastic scenarios, in 2017 IEEE Innovative Smart Grid Technologies - Asia: Smart Grid for Smart Community, ISGT-Asia 2017, (2018)

    Google Scholar 

  66. Y. Zhang, Y. Xu, Z.Y. Dong, R. Zhang, A hierarchical self-adaptive data-analytics method for real-time power system short-term voltage stability assessment. IEEE Trans. Ind. Informat. 15 (2019). https://doi.org/10.1109/TII.2018.2829818

  67. M.J. Ghorbani, M.A. Choudhry, A. Feliachi, A multiagent design for power distribution systems automation. IEEE Trans. Smart Grid 7 (2016). https://doi.org/10.1109/TSG.2015.2453884

  68. Y. Zhou, J. Wu, Z. Yu, L. Ji, L. Hao, A hierarchical method for transient stability prediction of power systems using the confidence of a SVM-based ensemble classifier. Energies (2016). https://doi.org/10.3390/en9100778

  69. A. Sharifian, S. Sharifian, A new power system transient stability assessment method based on Type-2 fuzzy neural network estimation. Int. J. Electr. Power Energy Syst. 64 (2015). https://doi.org/10.1016/j.ijepes.2014.07.007

  70. J.J.Q. Yu, D.J. Hill, A.Y.S. Lam, J. Gu, V.O.K. Li, Intelligent time-adaptive transient stability assessment system. IEEE Trans. Power Syst. 33 (2018). https://doi.org/10.1109/TPWRS.2017.2707501

  71. J.J.Q. Yu, A.Y.S. Lam, D.J. Hill, V.O.K. Li, Delay aware intelligent transient stability assessment system. IEEE Access 5 (2017). https://doi.org/10.1109/ACCESS.2017.2746093

  72. X. Gu, Y. Li, Bayesian multiple kernels learning-based transient stability assessment of power systems using synchronized measurements, in IEEE Power and Energy Society General Meeting, (2013)

    Google Scholar 

  73. A.B. Mosavi, A. Amiri, H. Hosseini, A learning framework for size and type independent transient stability prediction of power system using twin convolutional support vector machine. IEEE Access 6 (2018). https://doi.org/10.1109/ACCESS.2018.2880273

  74. W. Hu, Z. Lu, S. Wu, W. Zhang, Y. Dong, R. Yu, B. Liu, Real-time transient stability assessment in power system based on improved SVM. J. Mod. Power Syst. Clean. Energy 7 (2019). https://doi.org/10.1007/s40565-018-0453-x

  75. Y. Zhang, T. Li, G. Na, G. Li, Y. Li, Optimized extreme learning machine for power system transient stability prediction using synchrophasors. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/529724

  76. M. He, J. Zhang, V. Vittal, Robust online dynamic security assessment using adaptive ensemble decision-tree learning. IEEE Trans. Power Syst. 28 (2013). https://doi.org/10.1109/TPWRS.2013.2266617

  77. C. Zhang, Y. Li, Z. Yu, F. Tian, Feature selection of power system transient stability assessment based on random forest and recursive feature elimination, in Asia-Pacific Power and Energy Engineering Conference, APPEEC, (2016)

    Google Scholar 

  78. Y. Li, G. Li, Z. Wang, Rule extraction based on extreme learning machine and an improved ant-miner algorithm for transient stability assessment. PLoS One 10 (2015). https://doi.org/10.1371/journal.pone.0130814

  79. R. Zhang, Y. Xu, Z.Y. Dong, P. Zhang, K.P. Wong, Voltage stability margin prediction by ensemble based extreme learning machine, in IEEE Power and Energy Society General Meeting, (2013)

    Google Scholar 

  80. H.H. Goh, Q.S. Chua, S.W. Lee, B.C. Kok, K.C. Goh, K.T.K. Teo, Evaluation for voltage stability indices in power system using artificial neural network, in Procedia Engineering, (2015)

    Google Scholar 

  81. S.M. Pérez-Londoño, G. Olivar-Tost, J.J. Mora-Florez, Online determination of voltage stability weak areas for situational awareness improvement. Electr. Power Syst. Res. 145 (2017). https://doi.org/10.1016/j.epsr.2016.12.026

  82. K.S. Sajan, V. Kumar, B. Tyagi, ICA based artificial neural network model for voltage stability monitoring, in IEEE Region 10 Annual International Conference, Proceedings/TENCON, (2016)

    Google Scholar 

  83. K.S. Sajan, V. Kumar, B. Tyagi, Genetic algorithm based support vector machine for on-line voltage stability monitoring. Int. J. Electr. Power Energy Syst. 73 (2015). https://doi.org/10.1016/j.ijepes.2015.05.002

  84. A.R. Bahmanyar, A. Karami, Power system voltage stability monitoring using artificial neural networks with a reduced set of inputs. Int. J. Electr. Power Energy Syst. 58 (2014). https://doi.org/10.1016/j.ijepes.2014.01.019

  85. S.R. Nandanwar, M.L. Kolhe, S.B. Warkad, N.P. Patidar, V.K. Singh, Voltage security assessment by using PFDT and CBR methods in emerging power system, in Energy Procedia, (2018)

    Google Scholar 

  86. H. Mohammadi, G. Khademi, M. Dehghani, D. Simon, Voltage stability assessment using multi-objective biogeography-based subset selection. Int. J. Electr. Power Energy Syst. 103 (2018). https://doi.org/10.1016/j.ijepes.2018.06.017

  87. V. Jayasankar, N. Kamaraj, N. Vanaja, Estimation of voltage stability index for power system employing artificial neural network technique and TCSC placement. Neurocomputing 73 (2010). https://doi.org/10.1016/j.neucom.2010.07.006

  88. S. Khokhar, A.A. Mohd Zin, A.P. Memon, A.S. Mokhtar, A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network. J. Int. Meas. Confed. 95 (2017). https://doi.org/10.1016/j.measurement.2016.10.013

  89. A.A. Abdoos, P. Khorshidian Mianaei, M. Rayatpanah Ghadikolaei, Combined VMD-SVM based feature selection method for classification of power quality events. Appl. Soft Comput. J. 38 (2016). https://doi.org/10.1016/j.asoc.2015.10.038

  90. K. Manimala, K. Selvi, R. Ahila, Optimization techniques for improving power quality data mining using wavelet packet based support vector machine. Neurocomputing 77 (2012). https://doi.org/10.1016/j.neucom.2011.08.010

  91. U. Singh, S.N. Singh, Application of fractional Fourier transform for classification of power quality disturbances. IET Sci. Meas. Technol. 11 (2017). https://doi.org/10.1049/iet-smt.2016.0194

  92. Z. Liu, Y. Cui, W. Li, A classification method for complex power quality disturbances using EEMD and rank wavelet SVM. IEEE Trans. Smart Grid 6 (2015). https://doi.org/10.1109/TSG.2015.2397431

  93. Z. Liquan, G. Meijiao, W. Lin, Classification of multiple power quality disturbances based on the improved SVM, in Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2017, (2018)

    Google Scholar 

  94. U. Singh, S.N. Singh, A new optimal feature selection scheme for classification of power quality disturbances based on ant colony framework. Appl. Soft Comput. J. 74 (2019). https://doi.org/10.1016/j.asoc.2018.10.017

  95. D. De Yong, S. Bhowmik, F. Magnago, An effective power quality classifier using wavelet transform and support vector machines. Expert Syst. Appl. 42 (2015). https://doi.org/10.1016/j.eswa.2015.04.002

  96. S. Shukla, S. Mishra, B. Singh, Empirical-mode decomposition with hilbert transform for power-quality assessment. IEEE Trans. Power Deliv. 24 (2009). https://doi.org/10.1109/TPWRD.2009.2028792

  97. H. EriÅŸti, Y. Demir, A new algorithm for automatic classification of power quality events based on wavelet transform and SVM. Expert Syst. Appl. 37 (2010). https://doi.org/10.1016/j.eswa.2009.11.015

  98. H. Liu, F. Hussain, Y. Shen, S. Arif, A. Nazir, M. Abubakar, Complex power quality disturbances classification via curvelet transform and deep learning. Electr. Power Syst. Res. 163 (2018). https://doi.org/10.1016/j.epsr.2018.05.018

  99. F. Daneshfar, H. Bevrani, Load-frequency control: a GA-based multi-agent reinforcement learning. IET Gener. Transm. Distrib. (2010). https://doi.org/10.1049/iet-gtd.2009.0168

  100. H. Li, C. Li, Y. Liu, Maximum frequency deviation assessment with clustering based on metric learning. Int. J. Electr. Power Energy Syst. 120 (2020). https://doi.org/10.1016/j.ijepes.2020.105980

  101. L. Yin, T. Yu, L. Zhou, L. Huang, X. Zhang, B. Zheng, Artificial emotional reinforcement learning for automatic generation control of large-scale interconnected power grids. IET Gener. Transm. Distrib. 11, 2305–2313 (2017). https://doi.org/10.1049/iet-gtd.2016.1734

    Article  Google Scholar 

  102. M. Abouhea, W. Gueaieb, A. Sharaf, Load frequency regulation for multi-area power system using integral reinforcement learning. IET Gener. Transm. Distrib. 13 (2019). https://doi.org/10.1049/iet-gtd.2019.0218

  103. Z. Yan, Y. Xu, A multi-agent deep reinforcement learning method for cooperative load frequency control of multi-area power systems. IEEE Trans. Power Syst. (2020). https://doi.org/10.1109/tpwrs.2020.2999890

  104. Q. Wang, F. Li, Y. Tang, Y. Xu, Integrating model-driven and data-driven methods for power system frequency stability assessment and control. IEEE Trans. Power Syst. 34 (2019). https://doi.org/10.1109/TPWRS.2019.2919522

  105. Z. Hou, J. Folium, P. Etingov, F. Tuffner, D. Kosterev, G. Matthews, Machine learning of factors influencing damping and frequency of dominant inter-area modes in the WECC interconnect, in 2018 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2018 - Proceedings, (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadeghi, S., Hesami Naghshbandy, A., Moradi, P., Rezaei, N. (2021). Introduction and Literature Review of the Application of Machine Learning/Deep Learning to Control Problems of Power Systems. In: Nazari-Heris, M., Asadi, S., Mohammadi-Ivatloo, B., Abdar, M., Jebelli, H., Sadat-Mohammadi, M. (eds) Application of Machine Learning and Deep Learning Methods to Power System Problems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-77696-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77696-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77695-4

  • Online ISBN: 978-3-030-77696-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics