Skip to main content

Introduction to Machine Learning Methods in Energy Engineering

  • Chapter
  • First Online:
Application of Machine Learning and Deep Learning Methods to Power System Problems

Part of the book series: Power Systems ((POWSYS))

Abstract

Nowadays, the increasing energy demand, development of smart grids, and the combination of different energy systems have led to the complexity of power systems. On the other hand, ever-expanding energy consumption, development of industry and technology systems, and high penetration of solar and wind energies have made electricity networks operate in more complex and uncertain conditions. Therefore, analysis of traditional power and energy systems requires physical modeling and extensive numerical computation. To analyze these systems’ behavior, advanced metering and condition monitoring devices and systems are utilized, which generate huge amounts of data. Assessment of these data is approximately impossible by conventional methods and requires powerful data mining procedures. Machine learning, deep learning, and a variety of regression, classification, and clustering algorithms are powerful tools to use in these issues. These procedures can be utilized for load/demand forecasting, demand response evaluation, defect/fault detection in electrical equipment, power system analysis and control, cybersecurity, and renewable energy generation prediction. Understanding the structure and functioning of each learning method is therefore one of the most important issues in the application of them to solve power system problems. In this chapter, we will introduce and discuss selected methods of data mining based on their learning, structure, formulation, mode of operation, and application in power systems. Literature on machine learning and deep learning procedures, train and test process of networked methods, and, finally, applications of each procedure are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Sadeghian, A. Moradzadeh, B. Mohammadi-Ivatloo, B. Mohammadi-Ivatloo, M. Abapour, F.P.G. Marquez, Generation units maintenance in combined heat and power integrated systems using the mixed integer quadratic programming approach. Energies 13(11), 2840 (2020). https://doi.org/10.3390/en13112840

    Article  Google Scholar 

  2. S. Abapour, M. Nazari-Heris, B. Mohammadi-Ivatloo, M. Tarafdar Hagh, Game theory approaches for the solution of power system problems: a comprehensive review. Arch. Comput. Methods Eng. 27(1), 81–103 (2020). https://doi.org/10.1007/s11831-018-9299-7

    Article  MathSciNet  Google Scholar 

  3. S. Pan, T. Morris, U. Adhikari, Developing a hybrid intrusion detection system using data mining for power systems. IEEE Trans. Smart Grid 6(6), 3104–3113 (2015). https://doi.org/10.1109/TSG.2015.2409775

    Article  Google Scholar 

  4. E. Hossain, I. Khan, F. Un-Noor, S.S. Sikander, M.S.H. Sunny, Application of big data and machine learning in smart grid, and associated security concerns: a review. IEEE Access 7, 13960–13988 (2019). https://doi.org/10.1109/ACCESS.2019.2894819

    Article  Google Scholar 

  5. I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Elsevier, New York, 2016)

    Google Scholar 

  6. Z. Feng, Y. Zhu, A survey on trajectory data mining: techniques and applications. IEEE Access 4, 2056–2067 (2016). https://doi.org/10.1109/ACCESS.2016.2553681

    Article  Google Scholar 

  7. Y. Zheng, Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 1–41 (2015). https://doi.org/10.1145/2743025

    Article  Google Scholar 

  8. A. Moradzadeh, K. Pourhossein, PCA-assisted location of small short circuit in transformer winding, in 2020 28th Iranian Conference on Electrical Engineering (ICEE), (2020), pp. 1–6. https://doi.org/10.1109/icee50131.2020.9260815

    Chapter  Google Scholar 

  9. M. Bagheri, R. Esfilar, M.S. Golchi, C.A. Kennedy, A comparative data mining approach for the prediction of energy recovery potential from various municipal solid waste. Renew. Sust. Energ. Rev. 116, 109423 (2019). https://doi.org/10.1016/j.rser.2019.109423

    Article  Google Scholar 

  10. Y. Noorollahi, A. Golshanfard, A. Aligholian, B. Mohammadi-ivatloo, S. Nielsen, A. Hajinezhad, Sustainable energy system planning for an industrial zone by integrating electric vehicles as energy storage. J. Energy Storage 30, 101553 (2020). https://doi.org/10.1016/j.est.2020.101553

    Article  Google Scholar 

  11. M. Ghahramani, M. Nazari-Heris, K. Zare, B. Mohammadi-Ivatloo, Robust Optimal Planning and Operation of Electrical Energy Systems (Springer, Cham, 2019)

    Google Scholar 

  12. D.A.C. Narciso, F.G. Martins, Application of machine learning tools for energy efficiency in industry: a review. Energy Rep. 6, 1181–1199 (2020). https://doi.org/10.1016/j.egyr.2020.04.035

    Article  Google Scholar 

  13. A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, A. Anvari-Moghaddam, Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings. Appl Sci (Switzerland) 10(11), 3829 (2020). https://doi.org/10.3390/app10113829

    Article  Google Scholar 

  14. S. Fathi, R. Srinivasan, A. Fenner, S. Fathi, Machine learning applications in urban building energy performance forecasting: a systematic review. Renew. Sust. Energ. Rev. 133, 110287 (2020). https://doi.org/10.1016/j.rser.2020.110287

    Article  Google Scholar 

  15. A. Moradzadeh, S. Zakeri, M. Shoaran, B. Mohammadi-Ivatloo, F. Mohamamdi, Short-term load forecasting of microgrid via hybrid support vector regression and long short-term memory algorithms. Sustainability (Switzerland) 12(17), 7076 (2020). https://doi.org/10.3390/su12177076

    Article  Google Scholar 

  16. S.S. Roy, P. Samui, I. Nagtode, H. Jain, V. Shivaramakrishnan, B. Mohammadi-ivatloo, Forecasting heating and cooling loads of buildings: A comparative performance analysis. J. Ambient. Intell. Humaniz. Comput. 11(3), 1253–1264 (2020). https://doi.org/10.1007/s12652-019-01317-y

    Article  Google Scholar 

  17. G. Chitalia, M. Pipattanasomporn, V. Garg, S. Rahman, Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks. Appl. Energy 278, 115410 (2020). https://doi.org/10.1016/j.apenergy.2020.115410

    Article  Google Scholar 

  18. A. Moradzadeh, O. Sadeghian, K. Pourhossein, B. Mohammadi-Ivatloo, A. Anvari-Moghaddam, Improving residential load disaggregation for sustainable development of energy via principal component analysis. Sustainability (Switzerland) 12(8), 3158 (2020). https://doi.org/10.3390/SU12083158

    Article  Google Scholar 

  19. Y.T. Quek, W.L. Woo, T. Logenthiran, Load disaggregation using one-directional convolutional stacked long short-term memory recurrent neural network. IEEE Syst. J. 14(1), 1395–1404 (2020). https://doi.org/10.1109/JSYST.2019.2919668

    Article  Google Scholar 

  20. M. Kaselimi, E. Protopapadakis, A. Voulodimos, N. Doulamis, A. Doulamis, Multi-channel recurrent convolutional neural networks for energy disaggregation. IEEE Access 7, 81047–81056 (2019). https://doi.org/10.1109/ACCESS.2019.2923742

    Article  Google Scholar 

  21. A. Ahmadi, M. Nabipour, B. Mohammadi-Ivatloo, A.M. Amani, S. Rho, M.J. Piran, Long-term wind power forecasting using tree-based learning algorithms. IEEE Access 8, 151511–151522 (2020). https://doi.org/10.1109/ACCESS.2020.3017442

    Article  Google Scholar 

  22. M. AlKandari, I. Ahmad, Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Appl. Comput. Inform. (2019). https://doi.org/10.1016/j.aci.2019.11.002

  23. H. Demolli, A.S. Dokuz, A. Ecemis, M. Gokcek, Wind power forecasting based on daily wind speed data using machine learning algorithms. Energy Convers. Manag. 198, 111823 (2019). https://doi.org/10.1016/j.enconman.2019.111823

    Article  Google Scholar 

  24. C. Voyant et al., Machine learning methods for solar radiation forecasting: A review. Renew. Energy 105, 569–582 (2017). https://doi.org/10.1016/j.renene.2016.12.095

    Article  Google Scholar 

  25. A. Mansour-Saatloo, A. Moradzadeh, B. Mohammadi-Ivatloo, A. Ahmadian, A. Elkamel, Machine learning based PEVs load extraction and analysis. Electronics (Switzerland) 9(7), 1–15 (2020). https://doi.org/10.3390/electronics9071150

    Article  Google Scholar 

  26. A. Ahmadian, M. Sedghi, H. Fgaier, B. Mohammadi-ivatloo, M.A. Golkar, A. Elkamel, PEVs data mining based on factor analysis method for energy storage and DG planning in active distribution network: introducing S2S effect. Energy 175, 265–277 (2019). https://doi.org/10.1016/j.energy.2019.03.097

    Article  Google Scholar 

  27. H. Jahangir et al., Charging demand of plug-in electric vehicles: forecasting travel behavior based on a novel rough artificial neural network approach. J. Clean. Prod. 229, 1029–1044 (2019). https://doi.org/10.1016/j.jclepro.2019.04.345

    Article  Google Scholar 

  28. A. Moradzadeh, K. Khaffafi, Comparison and evaluation of the performance of various types of neural networks for planning issues related to optimal management of charging and discharging electric cars in intelligent power grids. Emerg. Sci. J. 1(4), 201–207 (2017). https://doi.org/10.28991/ijse-01123

    Article  Google Scholar 

  29. J. Nowotarski, R. Weron, Recent advances in electricity price forecasting: a review of probabilistic forecasting. Renew. Sust. Energ. Rev. 81, 1548–1568 (2018). https://doi.org/10.1016/j.rser.2017.05.234

    Article  Google Scholar 

  30. R. Weron, Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30(4), 1030–1081 (2014). https://doi.org/10.1016/j.ijforecast.2014.08.008

    Article  Google Scholar 

  31. K. Wang, C. Xu, Y. Zhang, S. Guo, A.Y. Zomaya, Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans. Big Data 5(1), 34–45 (2017). https://doi.org/10.1109/tbdata.2017.2723563

    Article  Google Scholar 

  32. A. Moradzadeh, K. Pourhossein, B. Mohammadi-Ivatloo, F. Mohammadi, Locating inter-turn faults in transformer windings using isometric feature mapping of frequency response traces. IEEE Trans. Ind. Inform. (2020). https://doi.org/10.1109/tii.2020.3016966

  33. A. Moradzadeh, K. Pourhossein, Application of support vector machines to locate minor short circuits in transformer windings, in 2019 54th International Universities Power Engineering Conference (UPEC), (2019), pp. 1–6

    Google Scholar 

  34. H. Momeni, N. Sadoogi, M. Farrokhifar, H.F. Gharibeh, Fault diagnosis in photovoltaic arrays using GBSSL method and proposing a fault correction system. IEEE Trans. Ind. Inform. 16(8), 5300–5308 (2020). https://doi.org/10.1109/TII.2019.2908992

    Article  Google Scholar 

  35. D.N. Coelho, G.A. Barreto, C.M.S. Medeiros, J.D.A. Santos, Performance comparison of classifiers in the detection of short circuit incipient fault in a three-phase induction motor, in 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), (2014), pp. 42–48. https://doi.org/10.1109/CIES.2014.7011829

    Chapter  Google Scholar 

  36. A. Moradzadeh, K. Pourhossein, Early detection of turn-to-turn faults in power transformer winding: an experimental study, in Proceedings 2019 International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2019 and 2019 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2019, (2019), pp. 199–204. https://doi.org/10.1109/ACEMP-OPTIM44294.2019.9007169

    Chapter  Google Scholar 

  37. S. Zhang, Y. Wang, M. Liu, Z. Bao, Data-based line trip fault prediction in power systems using LSTM networks and SVM. IEEE Access 6, 7675–7686 (2018). https://doi.org/10.1109/ACCESS.2017.2785763

    Article  Google Scholar 

  38. M. Mohammad Taheri, H. Seyedi, M. Nojavan, M. Khoshbouy, B. Mohammadi Ivatloo, High-speed decision tree based series-compensated transmission lines protection using differential phase angle of superimposed current. IEEE Trans. Power Deliv. 33(6), 3130–3138 (2018). https://doi.org/10.1109/TPWRD.2018.2861841

    Article  Google Scholar 

  39. J.J.Q. Yu, Y. Hou, V.O.K. Li, Online false data injection attack detection with wavelet transform and deep neural networks. IEEE Trans. Ind. Inform. 14(7), 3271–3280 (2018). https://doi.org/10.1109/TII.2018.2825243

    Article  Google Scholar 

  40. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-based cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020). https://doi.org/10.1109/ACCESS.2020.2992249

    Article  Google Scholar 

  41. D. Djenouri, R. Laidi, Y. Djenouri, I. Balasingham, Machine learning for smart building applications. ACM Comput. Surv. 52(2), 1–36 (2019). https://doi.org/10.1145/3311950

    Article  Google Scholar 

  42. I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine learning (Elsevier, New York, 2011)

    Google Scholar 

  43. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1023/A:1022627411411

    Article  MATH  Google Scholar 

  44. A. Zendehboudi, M.A. Baseer, R. Saidur, Application of support vector machine models for forecasting solar and wind energy resources: a review. J. Clean. Prod. 199, 272–285 (2018). https://doi.org/10.1016/j.jclepro.2018.07.164

    Article  Google Scholar 

  45. A. Moradzadeh, S. Zeinal-Kheiri, B. Mohammadi-Ivatloo, M. Abapour, A. Anvari-Moghaddam, Support vector machine-assisted improvement residential load disaggregation, in 2020 28th Iranian Conference on Electrical Engineering (ICEE), (2020), pp. 1–6. https://doi.org/10.1109/icee50131.2020.9260869

    Chapter  Google Scholar 

  46. A.G. Ivakhnenko, Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 1(4), 364–378 (1971). https://doi.org/10.1109/TSMC.1971.4308320

    Article  MathSciNet  Google Scholar 

  47. I. Ebtehaj, H. Bonakdari, A.H. Zaji, H. Azimi, F. Khoshbin, GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Eng. Sci. Technol. 18(4), 746–757 (2015). https://doi.org/10.1016/j.jestch.2015.04.012

    Article  Google Scholar 

  48. H. Jafarian, H. Sayyaadi, F. Torabi, Modeling and optimization of dew-point evaporative coolers based on a developed GMDH-type neural network. Energy Convers. Manag. 143, 49–65 (2017). https://doi.org/10.1016/j.enconman.2017.03.015

    Article  Google Scholar 

  49. N. Nariman-Zadeh, A. Darvizeh, A. Jamali, A. Moeini, Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. J. Mater. Process. Technol. 164–165, 1561–1571 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.020

    Article  Google Scholar 

  50. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995)

    Book  Google Scholar 

  51. J. Antonanzas, R. Urraca, F.J. Martinez-De-Pison, F. Antonanzas-Torres, Solar irradiation mapping with exogenous data from support vector regression machines estimations. Energy Convers. Manag. 100, 380–390 (2015). https://doi.org/10.1016/j.enconman.2015.05.028

    Article  Google Scholar 

  52. F. Antonanzas-Torres, R. Urraca, J. Antonanzas, J. Fernandez-Ceniceros, F.J. Martinez-de-Pison, Generation of daily global solar irradiation with support vector machines for regression. Energy Convers. Manag. 96, 277–286 (2015). https://doi.org/10.1016/j.enconman.2015.02.086

    Article  Google Scholar 

  53. Specht, Probabilistic neural networks for classification, mapping, or associative memory, in IEEE International Conference on Neural Networks, (1988), pp. 525–532. https://doi.org/10.1109/ICNN.1988.23887

    Chapter  Google Scholar 

  54. C.M. Hong, F.S. Cheng, C.H. Chen, Optimal control for variable-speed wind generation systems using general regression neural network. Int. J. Electr. Power Energy Syst. 60, 14–23 (2014). https://doi.org/10.1016/j.ijepes.2014.02.015

    Article  Google Scholar 

  55. Y.W. Huang, M.Q. Chen, Y. Li, J. Guo, Modeling of chemical exergy of agricultural biomass using improved general regression neural network. Energy 114, 1164–1175 (2016). https://doi.org/10.1016/j.energy.2016.08.090

    Article  Google Scholar 

  56. J. Nirmal, M. Zaveri, S. Patnaik, P. Kachare, Voice conversion using general regression neural network. Appl. Soft Comput. 24, 1–12 (2014). https://doi.org/10.1016/j.asoc.2014.06.040

    Article  Google Scholar 

  57. Z. Yu, F. Haghighat, B.C.M. Fung, H. Yoshino, A decision tree method for building energy demand modeling. Energ. Buildings 42(10), 1637–1646 (2010). https://doi.org/10.1016/j.enbuild.2010.04.006

    Article  Google Scholar 

  58. P. Moutis, S. Skarvelis-Kazakos, M. Brucoli, Decision tree aided planning and energy balancing of planned community microgrids. Appl. Energy 161, 197–205 (2016). https://doi.org/10.1016/j.apenergy.2015.10.002

    Article  Google Scholar 

  59. S. Salzberg, Book Review-C4. 5: Programs for Machine Learning (Morgan Kaufmann, Burlington, 1993)

    Google Scholar 

  60. R. Yan, Z. Ma, Y. Zhao, G. Kokogiannakis, A decision tree based data-driven diagnostic strategy for air handling units. Energ. Buildings 133, 37–45 (2016). https://doi.org/10.1016/j.enbuild.2016.09.039

    Article  Google Scholar 

  61. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1023/A:1022643204877

    Article  Google Scholar 

  62. K. Benmouiza, A. Cheknane, Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Convers. Manag. 75, 561–569 (2013). https://doi.org/10.1016/j.enconman.2013.07.003

    Article  Google Scholar 

  63. S. Li, H. Ma, W. Li, Typical solar radiation year construction using k-means clustering and discrete-time Markov chain. Appl. Energy 205, 720–731 (2017). https://doi.org/10.1016/j.apenergy.2017.08.067

    Article  Google Scholar 

  64. K. Wang, X. Qi, H. Liu, J. Song, Deep belief network based k-means cluster approach for short-term wind power forecasting. Energy 165, 840–852 (2018). https://doi.org/10.1016/j.energy.2018.09.118

    Article  Google Scholar 

  65. A. Shrestha, A. Mahmood, Review of deep learning algorithms and architectures. IEEE Access 7, 53040–53065 (2019). https://doi.org/10.1109/ACCESS.2019.2912200

    Article  Google Scholar 

  66. Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  67. D. Zhang, X. Han, C. Deng, Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE J. Power Energy Syst. 4(3), 362–370 (2018). https://doi.org/10.17775/CSEEJPES.2018.00520

    Article  Google Scholar 

  68. L. Zhang, J. Lin, B. Liu, Z. Zhang, X. Yan, M. Wei, A review on deep learning applications in prognostics and health management. IEEE Access 7, 162415–162438 (2019). https://doi.org/10.1109/ACCESS.2019.2950985

    Article  Google Scholar 

  69. A. Moradzadeh, K. Pourhossein, Location of disk space variations in transformer winding using convolutional neural networks, in 2019 54th International Universities Power Engineering Conference, UPEC 2019 - Proceedings, (2019), pp. 1–5. https://doi.org/10.1109/UPEC.2019.8893596

    Chapter  Google Scholar 

  70. A. Moradzadeh, K. Pourhossein, Short circuit location in transformer winding using deep learning of its frequency responses, in Proceedings 2019 International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2019 and 2019 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2019, (2019), pp. 268–273. https://doi.org/10.1109/ACEMP-OPTIM44294.2019.9007176

    Chapter  Google Scholar 

  71. P. Li, Z. Chen, L.T. Yang, Q. Zhang, M.J. Deen, Deep convolutional computation model for feature learning on big data in internet of things. IEEE Trans. Ind. Inform. 14(2), 790–798 (2018). https://doi.org/10.1109/TII.2017.2739340

    Article  Google Scholar 

  72. N. Koroniotis, N. Moustafa, E. Sitnikova, Forensics and deep learning mechanisms for botnets in internet of things: A survey of challenges and solutions. IEEE Access 7, 61764–61785 (2019). https://doi.org/10.1109/ACCESS.2019.2916717

    Article  Google Scholar 

  73. J. Han, S. Miao, Y. Li, W. Yang, H. Yin, A wind farm equivalent method based on multi-view transfer clustering and stack sparse auto encoder. IEEE Access 8, 92827–92841 (2020). https://doi.org/10.1109/ACCESS.2020.2993808

    Article  Google Scholar 

  74. Z.A. Khan, S. Zubair, K. Imran, R. Ahmad, S.A. Butt, N.I. Chaudhary, A new users rating-trend based collaborative denoising auto-encoder for top-N recommender systems. IEEE Access 7, 141287–141310 (2019). https://doi.org/10.1109/ACCESS.2019.2940603

    Article  Google Scholar 

  75. W. Wang, X. Du, D. Shan, R. Qin, N. Wang, Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine. IEEE Trans. Cloud Comput. (2020). https://doi.org/10.1109/TCC.2020.3001017

  76. D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (ELUs), in 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, (2016)

    Google Scholar 

  77. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994). https://doi.org/10.1109/72.279181

    Article  Google Scholar 

  78. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  79. K. Wang, X. Qi, H. Liu, Photovoltaic power forecasting based LSTM-convolutional network. Energy 189, 116225 (2019). https://doi.org/10.1016/j.energy.2019.116225

    Article  Google Scholar 

  80. A. Mohamed, G.E. Dahl, G. Hinton, Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20(1), 14–22 (2012). https://doi.org/10.1109/TASL.2011.2109382

    Article  Google Scholar 

  81. C.-Y. Zhang, C.L.P. Chen, M. Gan, L. Chen, Predictive deep Boltzmann machine for multiperiod wind speed forecasting. IEEE Trans. Sustain. Energy 6(4), 1416–1425 (2015). https://doi.org/10.1109/TSTE.2015.2434387

    Article  Google Scholar 

  82. B. Choubin, S. Khalighi-Sigaroodi, A. Malekian, Ö. Kişi, Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals. Hydrol. Sci. J. 61(6), 1001–1009 (2016). https://doi.org/10.1080/02626667.2014.966721

    Article  Google Scholar 

  83. R. Wang, S. Lu, W. Feng, A novel improved model for building energy consumption prediction based on model integration. Appl. Energy 262, 114561 (2020). https://doi.org/10.1016/j.apenergy.2020.114561

    Article  Google Scholar 

  84. K. Amasyali, N.M. El-Gohary, A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018). https://doi.org/10.1016/j.rser.2017.04.095

    Article  Google Scholar 

  85. Z. Xuan, Z. Xuehui, L. Liequan, F. Zubing, Y. Junwei, P. Dongmei, Forecasting performance comparison of two hybrid machine learning models for cooling load of a large-scale commercial building. J. Build. Eng. 21, 64–73 (2019). https://doi.org/10.1016/j.jobe.2018.10.006

    Article  Google Scholar 

  86. S. Sekhar Roy, R. Roy, V.E. Balas, Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renew. Sustain. Energy Rev. 82, 4256–4268 (2018). https://doi.org/10.1016/j.rser.2017.05.249

    Article  Google Scholar 

  87. M. Hossain, M.N. Sulaiman, A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manage. Process 5(2), 01–11 (Mar. 2015). https://doi.org/10.5121/ijdkp.2015.5201

    Article  Google Scholar 

  88. W. Kong, Z.Y. Dong, B. Wang, J. Zhao, J. Huang, A practical solution for non-intrusive type II load monitoring based on deep learning and post-processing. IEEE Trans. Smart Grid 11(1), 148–160 (2020). https://doi.org/10.1109/TSG.2019.2918330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Mohammadi-Ivatloo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moradzadeh, A., Mohammadi-Ivatloo, B., Pourhossein, K., Nazari-Heris, M., Asadi, S. (2021). Introduction to Machine Learning Methods in Energy Engineering. In: Nazari-Heris, M., Asadi, S., Mohammadi-Ivatloo, B., Abdar, M., Jebelli, H., Sadat-Mohammadi, M. (eds) Application of Machine Learning and Deep Learning Methods to Power System Problems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-77696-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77696-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77695-4

  • Online ISBN: 978-3-030-77696-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics