Skip to main content

Machine Learning Approaches in a Real Power System and Power Markets

  • Chapter
  • First Online:
Application of Machine Learning and Deep Learning Methods to Power System Problems

Part of the book series: Power Systems ((POWSYS))

  • 1234 Accesses

Abstract

The last developments in the electric power system such as liberalization of the electricity markets, a surge in demands of the electricity and its impacts on power grid effectiveness and quality. The growth of renewable energy resources, dispersed production and growing number of interconnections, and power exchanges between electricity companies clarify the demand for regeneration in the planning, operating, and control of electric power system. On the other hand, a significant increase in competition in power production and transmission area is the biggest issue facing in the power system industry nowadays. Also, the power market due to its nature is very challenging due to its inability to store generated energy and technical limitations such as congestion of transmission line (TL) which can lead to the isolation of sub-markets. Machine learning (ML) approaches can be an alternative solution for related problems replacing the traditional analytical techniques. In the past 30 years, ML techniques such as artificial neural networks (ANNs), fuzzy systems, evolutionary programming, and other artificial intelligence (AI) techniques have been presented in the power system community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.S. Eslami, Application of artificial intelligent techniques in PSS design: A survey of the state-of-the-art methods. Przegld Elektrotechniczny (Electr. Rev.) 87(4), 188–197 (2011)

    Google Scholar 

  2. R.S. Segal, A self-tuning power system stabilizer based on artificial neural network. Int. J. Electr. Power Energy Syst. 26(6), 423–430 (2004)

    Article  Google Scholar 

  3. S. Pillutla, Power system stabilization based on modular neural network architecture. Int. J. Electr. Power Energy Syst. 19(6), 411–418 (1997)

    Article  Google Scholar 

  4. N. Hosseinzadeh, A. Kalam, A hierarchical neural network adaptive power system stabilizer. Int. J. Electr. Power Energy 19, 28–33 (1999)

    Google Scholar 

  5. P. Shamsollahi, Design of a neural adaptive power system stabilizer using dynamic back-propagation method. Int. J. Electr. Power Energy Syst 22, 29–34 (2000)

    Article  Google Scholar 

  6. P. Shamsollahi, An adaptive power system stabilizer using online trained neural networks. IEEE Trans Energy Convers. 12, 382–387 (1997)

    Article  Google Scholar 

  7. M.A.-M. Abido, Adaptive tuning of power system stabilizers using radial basis function networks. Electr. Power Syst. Res. 49, 21–29 (1999)

    Article  Google Scholar 

  8. T. Senjyu, Recurrent neural network supplementary stabilization controller for automatic voltage regulator and governor. Electr. Power Components Syst. 31, 693–707 (2003)

    Article  Google Scholar 

  9. H.K. Ping, Studies of the improvement of probabilistic PSSs by using the single neuron model. Int. J. Electr. Power Energy Syst. 29(3), 217–221 (2007)

    Article  Google Scholar 

  10. S. Ray, A wide area measurement based neuro control for generation excitation systems. Eng. Appl. Artif. Intell. 22(3), 473–481 (2009)

    Article  Google Scholar 

  11. L.A. Zadeh, Fuzzy sets. Inf. Control. 8(3), 338–353 (1956)

    Article  MATH  Google Scholar 

  12. S. Pal, D. Mandal, Fuzzy logic and approximate reasoning: an overview. IETE J. Res. 37, 548–559 (1991)

    Article  Google Scholar 

  13. A.R. Tavakoli, A.R. Seifi, M.M. Arefi, Designing a selfconstructing fuzzy neural network controller for damping power system oscillations. Fuzzy Sets Syst. 356, 63–76 (2019)

    Article  MATH  Google Scholar 

  14. K. Eltag, M.S. Aslamx, R. Ullah, Dynamic stability enhancement using fuzzy PID control technology for power system. Int. J. Control. Autom. Syst. 17(1), 234–242 (2019)

    Article  Google Scholar 

  15. M. Farahani, S. Ganjefar, Intelligent power system stabilizer design using adaptive fuzzy sliding mode controller. Neurocomputing 226, 135–144 (2017)

    Article  Google Scholar 

  16. T.T. Lie, An adaptive fuzzy logic power system stabilizer. Electr. Power Syst. Res. 38(1), 75–81 (1996)

    Article  Google Scholar 

  17. M. Ramirez-Gonzalez, Self-tuned power system stabilizer based on a simple fuzzy logic controller. Electr. Power Components Syst. 38(4), 407–423 (2010)

    Article  Google Scholar 

  18. D.K. Sambariya, R. Prasad, Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. Int. J. Electr. Power Energy Syst. 61, 229–238 (2014)

    Article  Google Scholar 

  19. H.M. Soliman, E.H.E. Bayoumi, M.F. Hassan, Power system stabilizer design for minimal overshoot and control constraint using swarm optimization. Electr. Power Components Syst. 37(1), 111–126 (2008)

    Article  Google Scholar 

  20. S. Kamalasadan, G.D. Swann, R. Yousefian, A novel systemcentric intelligent adaptive control architecture for power system stabilizer based on adaptive neural networks. IEEE Syst. J. 8(4), 1074–1085 (2014)

    Article  Google Scholar 

  21. D. Molina, G.K. Venayagamoorthy, J. Liang, R.G. Harley, Intelligent local area signals based damping of power system oscillations using virtual generators and approximate dynamic programming. IEEE Trans. Smart Grid 4(1), 498–508 (2013)

    Article  Google Scholar 

  22. M. Farahani, A multi-objective power system stabilizer. IEEE Trans. Power Syst. 28(3), 2700–2707 (2013)

    Article  MathSciNet  Google Scholar 

  23. R. Hadidi, B. Jeyasurya, Reinforcement learning based real-time wide-area stabilizing control agents to enhance power system stability. IEEE Trans. Smart Grid 4(1), 489–497 (2013)

    Article  Google Scholar 

  24. S.R. Khuntia, S. Panda, ANFIS approach for SSSC controller design for the improvement of transient stability performance. Math. Comput. Model. 57(1), 289–300 (2013)

    Article  Google Scholar 

  25. A.G. Aissaoui, M. Abid, H. Abid, A. Tahour, A.K. Zeblah, A fuzzy logic controller for synchronous machine. J. Electr. Eng. Bratislava 58(5), 285 (2007)

    Google Scholar 

  26. J.W. Park, R.G. Harley, G.K. Venayagamoorthy, Adaptivecritic-based optimal neurocontrol for synchronous generators in a power system using MLP/RBF neural networks. IEEE Trans. Ind. Appl. 39(5), 1529–1540 (2003)

    Article  Google Scholar 

  27. F.M.E.S. Fayez, Robust adaptive wavelet-neural-network sliding-mode speed control for a DSP-based PMSM drive system. J Power Electr (JPE) 10(5), 50517 (2010)

    Google Scholar 

  28. K.C. Yu, S.P. Hsu, Y.H. Hung, Optimization of fuzzy controller of permanent magne synchronous motor. J. Appl. Sci. 7(19), 272535 (2007)

    Article  Google Scholar 

  29. E. Cetin, U. Oguz, H.S. Hasan, A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive. Expert Syst. Appl. 34(1), 65764 (2008)

    Google Scholar 

  30. J. Faiz, A. Azami, A. Keyhani, A. Proca, Closed-loop control stability for permanent magnet synchronous motor. Int. J. Electr. Power Energy Syst. 19(5), 3317 (1997)

    Article  Google Scholar 

  31. K. Murat, I.E. Hasan, Speed and current regulation of a permanent magnet synchronous motor via nonlinear and adaptive backstepping control. Math. Comput. Model. 53(910), 201530 (2011)

    Google Scholar 

  32. Q. Wang, H. Yu, M. Wang, X. Qi, A novel adaptive NeuroControl approach for permanent magnet synchronous motor speed control. Energies 11(9), 2355 (2018)

    Article  Google Scholar 

  33. C.B. Butt, M.A. Rahman, Untrained artificial neuron-based speed control of interior permanent-magnet motor drives over extended operating speed range. IEEE Trans. Ind. Appl. 49(3), 1146–1153 (2013)

    Article  Google Scholar 

  34. X. Sun, L. Chen, H. Jiang, Z. Yang, J. Chen, W. Zhang, High performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers. IEEE Trans. Ind. Electron. 63(6), 3479–3488 (2016)

    Article  Google Scholar 

  35. Y. Li, B. Zhang, X. Xu, Decoupling control for permanent magnet in-wheel motor using internal model control based on back-propagation neural network inverse system. Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 961 (2018)

    Google Scholar 

  36. Y. Li, B. Li, X. Xu, X. Sun, A nonlinear decoupling control approach using RBFNNI-based robust pole placement for a permanent magnet in-wheel motor. IEEE Access 6, 1844–1854 (2018)

    Article  Google Scholar 

  37. Z. Frijet, A. Zribi, M. Chtourou, Adaptive neural network internal model control for PMSM speed regulation. J. Electr. Syst. 14(2), 118–126 (2018)

    Google Scholar 

  38. K. Chen, C. Huang, J. He, Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High Volt. 1(1), 25–33 (2016)

    Article  Google Scholar 

  39. A.A. Yusuff, A.A. Jimoh, J.L. Munda, Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression. Electr. Power Syst. Res. 110, 73–83 (2014)

    Article  Google Scholar 

  40. Z. Liu, Z. Han, Y. Zhang, Q. Zhang, Multiwavelet packet entropy and its application in transmission line fault recognition and classification. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2043–2052 (2014)

    Article  Google Scholar 

  41. A. Swetapadma, A. Yadav, A novel single-ended fault location scheme for parallel transmission lines using k-nearest neighbor algorithm. Comput. Electr. Eng. 69, 41–53 (2018)

    Article  Google Scholar 

  42. A.L. da Silva Pessoa, M. Oleskovicz, P.E.T. Martins, A multi-stage methodology for fault location in radial distribution systems, in 2018 18th International Conference on Harmonics and Quality of Power (ICHQP) (IEEE, 2018), pp. 1–6

    Google Scholar 

  43. A. Prasad, J.B. Edward, Importance of artificial neural networks for location of faults in transmission systems: a survey, in 2017 11th International Conference on Intelligent Systems and Control (ISCO) (IEEE, 2017), pp. 357–362

    Google Scholar 

  44. Y.Q. Chen, O. Fink, G. Sansavini, Combined fault location and classification for power transmission lines fault diagnosis with integrated feature extraction. IEEE Trans. Ind. Electron. 65(1), 561–569 (2018)

    Article  Google Scholar 

  45. M.F. Guo, X.D. Zeng, D.Y. Chen, N.C. Yang, Deep learning-based earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems. IEEE Sens. J. 18(3), 1291–1300 (2018)

    Article  Google Scholar 

  46. N.R. Babu, B.J. Mohan, Fault classification in power systems using EMD and SVM. Ain Shams Eng. J. 8(2), 103–111 (2017)

    Article  Google Scholar 

  47. F.I. Lozada, F.L. Quilumba, F.E. Prez, Fault detection and classification in transmission lines using wavelet transform and support vector machines. Revista Tecnica Energia 14 (2018)

    Google Scholar 

  48. H. Malik, R. Sharma, EMD and ANN based intelligent fault diagnosis model for transmission line. J. Intell. Fuzzy Syst. 32(4), 3043–3050 (2017)

    Article  Google Scholar 

  49. M. Dhimish, V. Holmes, B. Mehrdadi, M. Dales, Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renew. Energy 117, 257–274 (2018)

    Article  Google Scholar 

  50. J.M. Johnson, A. Yadav, Fault detection and classification technique for HVDC transmission lines using KNN, in Information and Communication Technology for Sustainable Development, (Springer, Singapore, 2018), pp. 245–253

    Chapter  Google Scholar 

  51. N. Amruthnath, T. Gupta, Fault class prediction in unsupervised learning using model-based clustering approach, in 2018 International Conference on Information and Computer Technologies (ICICT) (IEEE, 2018), pp. 5–12

    Google Scholar 

  52. A. Khaleghi, M.O. Sadegh, M. Ghazizadeh-Ahsaee, A.M. Rabori, Transient fault area location and fault classification for distribution systems based on wavelet transform and adaptive NeuroFuzzy inference system (ANFIS). Adv. Electr. Electron. Eng. 16(2), 155–166 (2018)

    Google Scholar 

  53. R. Kumar, E. Koley, A. Yadav, A.S. Thoke, Fault classification of phase to phase fault in six phase transmission line using Haar wavelet and ANN, in 2014 International Conference on Signal Processing and Integrated Networks (SPIN), (IEEE, 2014), pp. 5–8

    Google Scholar 

  54. H. Livani, C.Y. Evrenosoglu, A machine learning and waveletbased fault location method for hybrid transmission lines. IEEE Trans. Smart Grid 5(1), 51–59 (2014)

    Article  Google Scholar 

  55. V. Malathi, N.S. Marimuthu, S. Baskar, Intelligent approaches using support vector machine and extreme learning machine for transmission line protection. Neurocomputing 73(10), 2160–2167 (2010)

    Article  Google Scholar 

  56. S.R. Samantaray, P.K. Dash, G. Panda, Distance relaying for transmission line using support vector machine and radial basis function neural network. Int. J. Electr. Power Energy Syst. 29, 551556 (2007)

    Article  Google Scholar 

  57. J.A. Jiang, C.L. Chuang, Y.C. Wang, C.H. Hung, J.Y. Wang, C.H. Lee, Y.T. Hsiao, A hybrid framework for fault detection, classification, and location. Part I: concept, structure, and methodology. IEEE Trans. Power Deliv. 26(3), 1988–1998 (2011)

    Article  Google Scholar 

  58. J.-A. Jiang, C.-L. Chuang, Y.-C. Wang, C.-H. Hung, J.-Y. Wang, C.-H. Lee, Y.-T. Hsiao, A hybrid framework for fault detection, classification, and locationpart II: implementation and test results. IEEE Trans. Power Deliv. 26(3), 1999–2008 (2011)

    Article  Google Scholar 

  59. M.T. Hagh, K. Razi, H. Taghizadeh, Fault classification and location of power transmission lines using artificial neural network, in IPEC 2007. International Power Engineering Conference (IEEE, 2007), pp. 1109–1114

    Google Scholar 

  60. P.K. Dash, S.R. Samantaray, An accurate fault classification algorithm using a minimal radial basis function neural network. Eng. Intell. Syst. 4, 205–210 (2004)

    Google Scholar 

  61. J. Upendar, C.P. Gupta, G.K. Singh, Discrete wavelet transform and probabilistic neural network based algorithm for classification of fault on transmission systems, in INDICON 2008. Annual IEEE India Conference, vol. 1 (IEEE, 2008), pp. 206–211

    Google Scholar 

  62. S.W. Fei, X.B. Zhang, Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Syst. Appl. 36(8), 11352–11357 (2009)

    Article  Google Scholar 

  63. A. Shintemirov, W. Tang, Q.H. Wu, Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming. IEEE Trans. Syst. Man Cybernet. C Appl. Rev. 39(1), 69–79 (2009)

    Article  Google Scholar 

  64. A.M. Shah, B.R. Bhalja, Discrimination between internal faults and other disturbances in transformer using the support vector machine based protection scheme. IEEE Trans. Power Deliv. 28(3), 1508–1515 (2013)

    Article  Google Scholar 

  65. L. Liu, Z. Ding, Modeling analysis of power transformer fault diagnosis based on improved relevance vector machine. Math. Prob. Eng. 2013, 636374 (2013)

    Article  Google Scholar 

  66. T.S. Sidhu, H. Singh, M.S. Sachdev, Design, implementation and testing of an artificial neural network based fault direction discriminator for protecting transmission lines. IEEE Trans. Power Deliv. 10(2), 697–706 (1995)

    Article  Google Scholar 

  67. Y. Cui, P. Bangalore, L.B. Tjernberg, An anomaly detection approach using wavelet transform and artificial neural networks for condition monitoring of wind turbines’ gearboxes, in 2018 Power Systems Computation Conference (PSCC) (IEEE, 2018), pp. 1–7

    Google Scholar 

  68. A.R. Bahmanyar, A. Karami, Power system voltage stability monitoring using artificial neural networks with a reduced set of inputs. Int. J. Electr. Power Energy Syst. 58, 246–256 (2014)

    Article  Google Scholar 

  69. D.Q. Zhou, U.D. Annakkage, A.D. Rajapakse, Online monitoring of voltage stability margin using an artificial neural network. IEEE Trans. Power Syst. 25(3), 1566–1574 (2010)

    Article  Google Scholar 

  70. D.V. Coury, D.C. Jorge, Artificial neural network approach to distance protection of transmission lines. IEEE Trans. Power Deliv. 13(1), 102–108 (1998)

    Article  Google Scholar 

  71. J. Pihler, B. Grar, D. Dolinar, Improved operation of power transformer protection using artificial neural network. IEEE Trans. Power Deliv. 12(3), 1128–1136 (1997)

    Article  Google Scholar 

  72. L. Hernandez, C. Baladrn, J.M. Aguiar, B. Carro, A.J. SanchezEsguevillas, J. Lloret, Short-term load forecasting for microgrids based on artificial neural networks. Energies 6(3), 1385–1408 (2013)

    Article  Google Scholar 

  73. C.N. Ko, C.M. Lee, Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy 49, 413–422 (2013)

    Article  Google Scholar 

  74. Z.A. Bashir, M.E. El-Hawary, Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans. Power Syst. 24(1), 20–27 (2009)

    Article  Google Scholar 

  75. P.F. Pai, W.C. Hong, Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electr. Power Syst. Res. 74(3), 417–425 (2005)

    Article  Google Scholar 

  76. D.K. Chaturvedi, A.P. Sinha, O.P. Malik, Short term load forecast using fuzzy logic and wavelet transform integrated generalized neural network. Int. J. Electr. Power Energy Syst. 67, 230–237 (2015)

    Article  Google Scholar 

  77. V.N. Coelho, I.M. Coelho, B.N. Coelho, A.J. Reis, R. Enayatifar, M.J. Souza, F.G. Guimares, A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment. Appl. Energy 169, 567–584 (2016)

    Article  Google Scholar 

  78. V.L. Paucar, M.J. Rider, Artificial neural networks for solving the power flow problem in electric power systems. Electr. Power Syst. Res. 62(2), 139–144 (2002)

    Article  Google Scholar 

  79. A. Arunagiri, B. Venkatesh, K. Ramasamy, Artificial neural network approach-an application to radial loadflow algorithm. IEICE Electron. Exp. 3(14), 353–360 (2006)

    Article  Google Scholar 

  80. A. Jain, S.C. Tripathy, R. Balasubramanian, K. Grag, Y. Kawazoe, Neural network based stochastic load flow analysis, in PowerCon 2004. 2004 International Conference on Power System Technology, 2004, vol. 2 (IEEE, 2004), pp. 1845–1850

    Google Scholar 

  81. A. Karami, M.S. Mohammadi, Radial basis function neural network for power system load-flow. Int. J. Electr. Power Energy Syst. 30(1), 60–66 (2008)

    Article  Google Scholar 

  82. Y.F. Huang, S. Werner, J. Huang, N. Kashyap, V. Gupta, State estimation in electric power grids: meeting new challenges presented by the requirements of the future grid. IEEE Sign. Process. Mag. 29(5), 33–43 (2012)

    Article  Google Scholar 

  83. D.V. Kumar, S.C. Srivastava, S. Shah, S. Mathur, Topology processing and static state estimation using artificial neural networks, in IEE Proceedings-Generation, Transmission and Distribution, vol. 143, no. 1 (IET, 1996), pp. 99–105

    Google Scholar 

  84. D. Singh, J.P. Pandey, D.S. Chauhan, Radial basis neural network state estimation of electric power networks, in Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, 2004. (DRPT 2004), vol. 1 (IEEE. 2004), pp. 90–95

    Google Scholar 

  85. D. Singh, J.P. Pandey, D.S. Chauhan, Topology identification, bad data processing, and state estimation using fuzzy pattern matching. IEEE Trans. Power Syst. 20(3), 1570–1579 (2005)

    Article  Google Scholar 

  86. F. Larki, M. Joorabian, H.M. Kelk, M. Pishvaei, Voltage stability evaluation of the Khouzestan power system in Iran using CPF method and modal analysis, In 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC) (IEEE, 2010), pp. 1–5

    Google Scholar 

  87. A. Zhukov, N. Tomin, D. Sidorov, D. Panasetsky, V. Spirayev, A hybrid artificial neural network for voltage security evaluation in a power system, in 2015 5th International Youth Conference on Energy (IYCE) (IEEE. 2015), pp. 1–8

    Google Scholar 

  88. H.H. Goh, Q.S. Chua, S.W. Lee, B.C. Kok, K.C. Goh, K.T.K. Teo, Evaluation for voltage stability indices in power system using artificial neural network. Proc. Eng. 118, 1127–1136 (2015)

    Article  Google Scholar 

  89. M.V. Suganyadevi, C.K. Babulal, S. Kalyani, Assessment of voltage stability margin by comparing various support vector regression models. Soft. Comput. 20(2), 807–818 (2016)

    Article  Google Scholar 

  90. M.B. Cain, R.P. Oneill, A. Castillo, History of Optimal Power Flow and Formulations (Federal Energy Regulatory Commission, Washington, DC, 2012)

    Google Scholar 

  91. L. Gan, N. Li, U. Topcu, S.H. Low, Optimal power flow in distribution networks, in Proceeding of 52nd IEEE conference on decision and control, December 2013

    Google Scholar 

  92. T.T. Nguyen, Neural network optimal-power-flow, in Fourth International Conference on Advances in Power System Control, Operation and Management, 1997, pp. 266–271

    Google Scholar 

  93. R.S. Hartati, M.E. El-Hawary, Optimal active power flow solutions using a modified Hopfield neural network, in 2001 Canadian Conference on Electrical and Computer Engineering, vol. 1 (IEEE. 2001), pp. 189–194

    Google Scholar 

  94. M. Mohatram, P. Tewari, N. Latanath, 2011, April Economic load flow using Lagrange neural network, in 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), (IEEE, 2011), pp. 1–7

    Google Scholar 

  95. J.H. Park, Y.S. Kim, I.K. Eom, K.Y. Lee, Economic load dispatch for piecewise quadratic cost function using Hopfield neural network. IEEE Trans. Power Syst. 8(3), 1030–1038 (1993)

    Article  Google Scholar 

  96. S.S. Reddy, J.A. Momoh, Economic dispatch using improved Hopfield neural network, in 2015 North American Power Symposium (NAPS), (IEEE, Chicago, 2015), pp. 1–5

    Google Scholar 

  97. V.N. Dieu, P. Schegner, Augmented Lagrange Hopfield network initialized by quadratic programming for economic dispatch with piecewise quadratic cost functions and prohibited zones. Appl. Soft Comput. 13(1), 292–301 (2013)

    Article  Google Scholar 

  98. E.M. Voumvoulakis, N.D. Hatziargyriou, A particle swarm optimization method for power system dynamic security control. IEEE Trans. Power Syst. 25(2), 1032–1041 (2010)

    Article  Google Scholar 

  99. C.F. Kucuktezcan, V.I. Genc, A new dynamic security enhancement method via genetic algorithms integrated with neural network based tools. Electr. Power Syst. Res. 83(1), 1–8 (2012)

    Article  Google Scholar 

  100. I. Genc, R. Diao, V. Vittal, S. Kolluri, S. Mandal, Decision tree-based preventive and corrective control applications for dynamic security enhancement in power systems. IEEE Trans. Power Syst. 25(3), 1611–1619 (2010)

    Article  Google Scholar 

  101. S. Ghosh, B.H. Chowdhury, Security-constrained optimal rescheduling of real power using Hopfield neural network. IEEE Trans. Power Syst. 11(4), 1743–1748 (1996)

    Article  Google Scholar 

  102. G. Crtina, C. Bonciu, M. Musat, Z. Zisman, Application of fuzzy logic for energy loss reduction in distribution networks, in 9th Mediterranean Electrotechnical Conference, 1998. MELECON 98, vol. 2 (IEEE, 1998), pp. 974–977

    Google Scholar 

  103. D. Villacci, G. Bontempi, A. Vaccaro, An adaptive local learning-based methodology for voltage regulation in distribution networks with dispersed generation. IEEE Trans. Power Syst. 21(3), 1131–1140 (2006)

    Article  Google Scholar 

  104. R. Nayak, J.D. Sharma, A hybrid neural network and simulated annealing approach to the unit commitment problem. Comput. Electr. Eng. 26(6), 461–477 (2000)

    Article  MATH  Google Scholar 

  105. H. Sasaki, M. Watanabe, D. Kubokawa, N. Yorino, R. Yokoyama, A solution method of unit commitment by artificial neural networks. IEEE Trans. Power Syst. 7(3), 974–981 (1992)

    Article  Google Scholar 

  106. K. Yan, Y. Du, Z. Ren, MPPT perturbation optimization of photovoltaic power systems based on solar irradiance data classification. IEEE Trans. Sustain. Energy 10, 514–521 (2018)

    Article  Google Scholar 

  107. H. Li, Z. Liu, Performance prediction and optimization of solar water heater via a knowledge-based machine learning method, in Handbook of Research on Power and Energy System Optimization, (IGI Global, Hershey, 2018), pp. 55–74

    Chapter  Google Scholar 

  108. E. Mocanu, D.C. Mocanu, P.H. Nguyen, A. Liotta, M.E. Webber, M. Gibescu, J.G. Slootweg, On-line building energy optimization using deep reinforcement learning. IEEE Trans. Smart Grid 10(4), 3698–3708 (2018)

    Google Scholar 

  109. C. Fu, G.Q. Li, K.P. Lin, H.J. Zhang, Short-term wind power prediction based on improved chicken algorithm optimization support vector machine. Sustainability 11(2), 512 (2019)

    Article  Google Scholar 

  110. T.C. Bora, V.C. Mariani, L. dos Santos Coelho, Multiobjective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominate sorting genetic algorithm. Appl. Therm. Eng. 146, 688–700 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razmi, P., Ghaemi Asl, M. (2021). Machine Learning Approaches in a Real Power System and Power Markets. In: Nazari-Heris, M., Asadi, S., Mohammadi-Ivatloo, B., Abdar, M., Jebelli, H., Sadat-Mohammadi, M. (eds) Application of Machine Learning and Deep Learning Methods to Power System Problems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-77696-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77696-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77695-4

  • Online ISBN: 978-3-030-77696-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics