Skip to main content

Effective Load Pattern Classification by Processing the Smart Meter Data Based on Event-Driven Processing and Machine Learning

  • Chapter
  • First Online:
Application of Machine Learning and Deep Learning Methods to Power System Problems

Part of the book series: Power Systems ((POWSYS))

Abstract

The utilization of smart meters is increasing with the technical developments. A proper collection and analysis of metering data is important to better serve various smart grid stakeholders. The classical sensing mechanism is known to be time-variant, which results in vast amounts of excessive data to be collected, distributed, processed, and stored. It causes an unnecessary increase of processing activity and consumption. In this context, this research uses the event-driven sensing and processing methods for an effective processing and collection of smart meter data. New adaptive rate techniques for data acquisition, processing, segmentation, and extraction of features are suggested. The extracted features, related to consumption patterns of appliances, are then used to classify these appliances. The classification is carried out by using robust algorithms, namely, k-nearest neighbor (KNN), artificial neural network (ANN), and Naïve Bayes. The findings showed more than a threefold benefit in compression and computational efficiency while attaining 94.4% highest classification accuracy for a six-class dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Ullah, Y. Faheem, B.-S. Kim, Energy and congestion-aware routing metric for smart grid AMI networks in smart city. IEEE Access 5, 13799–13810 (2017)

    Article  Google Scholar 

  2. H. Mohammed, S. Tonyali, K. Rabieh, M. Mahmoud, and K. Akkaya, Efficient privacy-preserving data collection scheme for smart grid AMI networks, (2016), pp. 1–6

    Google Scholar 

  3. S. Darby, Smart metering: What potential for householder engagement? Build. Res. Inf. 38(5), 442–457 (2010)

    Article  Google Scholar 

  4. Q. Sun et al., A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet Things J. 3(4), 464–479 (2015)

    Article  Google Scholar 

  5. D. Alahakoon, X. Yu, Smart electricity meter data intelligence for future energy systems: A survey. IEEE Trans. Ind. Inform. 12(1), 425–436 (2015)

    Article  Google Scholar 

  6. Y. Wang, Q. Chen, T. Hong, C. Kang, Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 10(3), 3125–3148 (2018)

    Article  Google Scholar 

  7. G. Barnicoat, M. Danson, The ageing population and smart metering: A field study of householders’ attitudes and behaviours towards energy use in Scotland. Energy Res. Soc. Sci. 9, 107–115 (2015)

    Article  Google Scholar 

  8. N. Uribe-Pérez, L. Hernández, D. De la Vega, I. Angulo, State of the art and trends review of smart metering in electricity grids. Appl. Sci. 6(3), 68 (2016)

    Article  Google Scholar 

  9. A. Ridi, C. Gisler, and J. Hennebert, ACS-F2—A new database of appliance consumption signatures. In 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), 2014, pp. 145–150

    Google Scholar 

  10. A. Ridi, C. Gisler, and J. Hennebert, Appliance and state recognition using Hidden Markov Models. In 2014 International Conference on Data Science and Advanced Analytics (DSAA), 2014, pp. 270–276, doi: https://doi.org/10.1109/DSAA.2014.7058084

  11. “Processing smart plug signals using machine learning - IEEE Conference Publication.” https://ieeexplore.ieee.org/document/7122532. Accessed 2 June 2020

  12. M. Verhelst, A. Bahai, Where analog meets digital: Analog? To? Information conversion and beyond. IEEE Solid-State Circuits Mag. 7(3), 67–80 (2015)

    Article  Google Scholar 

  13. X. Liu, L. Golab, W. Golab, I.F. Ilyas, S. Jin, Smart meter data analytics: Systems, algorithms, and benchmarking. ACM Trans. Database Syst. TODS 42(1), 1–39 (2016)

    MathSciNet  Google Scholar 

  14. N. Mogles et al., How smart do smart meters need to be? Build. Environ. 125, 439–450 (2017). https://doi.org/10.1016/j.buildenv.2017.09.008

    Article  Google Scholar 

  15. P. Koponen et al., Definition of Smart Metering and Applications and Identification of Benefits. (2008)

    Google Scholar 

  16. J. Ponoćko, J.V. Milanović, Forecasting demand flexibility of aggregated residential load using smart meter data. IEEE Trans. Power Syst. 33(5), 5446–5455 (2018). https://doi.org/10.1109/TPWRS.2018.2799903

    Article  Google Scholar 

  17. Z. Jiang, R. Lin, F. Yang, A hybrid machine learning model for electricity consumer categorization using smart meter data. Energ. Basel 11(9), 2235 (2018). http://dx.doi.org.effatuniversity.idm.oclc.org/10.3390/en11092235

    Google Scholar 

  18. S. Biansoongnern, B. Plungklang, Non-intrusive appliances load monitoring (nilm) for energy conservation in household with low sampling rate. Procedia Comput. Sci. 86, 172–175 (2016)

    Article  Google Scholar 

  19. A. Reinhardt et al., On the accuracy of appliance identification based on distributed load metering data. In 2012 Sustainable Internet and ICT for Sustainability (SustainIT), (2012), pp. 1–9

    Google Scholar 

  20. M. Weiss, A. Helfenstein, F. Mattern, and T. Staake, Leveraging smart meter data to recognize home appliances. In 2012 IEEE International Conference on Pervasive Computing and Communications, (2012), pp. 190–197

    Google Scholar 

  21. Pattern Recognition and Signal Analysis in Medical Imaging. (Elsevier, 2014)

    Google Scholar 

  22. K.-S. Fu, Applications of Pattern Recognition (CRC, New York, 2019)

    Google Scholar 

  23. C. Belley, S. Gaboury, B. Bouchard, A. Bouzouane, An efficient and inexpensive method for activity recognition within a smart home based on load signatures of appliances. Pervasive Mob. Comput. 12, 58–78 (2014)

    Article  Google Scholar 

  24. S.S.S.R. Depuru, L. Wang, V. Devabhaktuni, R.C. Green, High performance computing for detection of electricity theft. Int. J. Electr. Power Energy Syst. 47, 21–30 (2013)

    Article  Google Scholar 

  25. A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, S. Mishra, Decision tree and SVM-based data analytics for theft detection in smart grid. IEEE Trans. Ind. Inform. 12(3), 1005–1016 (2016)

    Article  Google Scholar 

  26. R. Granell, C.J. Axon, D.C. Wallom, Impacts of raw data temporal resolution using selected clustering methods on residential electricity load profiles. IEEE Trans. Power Syst. 30(6), 3217–3224 (2014)

    Article  Google Scholar 

  27. E.D. Varga, S.F. Beretka, C. Noce, G. Sapienza, Robust real-time load profile encoding and classification framework for efficient power systems operation. IEEE Trans. Power Syst. 30(4), 1897–1904 (2014)

    Article  Google Scholar 

  28. R. Al-Otaibi, N. Jin, T. Wilcox, P. Flach, Feature construction and calibration for clustering daily load curves from smart-meter data. IEEE Trans. Ind. Inform. 12(2), 645–654 (2016)

    Article  Google Scholar 

  29. S. Kiran, H. A. Khattak, H. I. Butt, and A. Ahmed, Towards Efficient Energy Monitoring Using IoT. In 2018 IEEE 21st International Multi-Topic Conference (INMIC), (2018), pp. 1–4

    Google Scholar 

  30. Signal Reconstruction. http://pilot.cnxproject.org/content/collection/col10064/latest/module/m10788/latest. Accessed 05 Dec 2019

  31. Physically Based Rendering - 3rd Edition. https://www.elsevier.com/books/physically-based-rendering/pharr/978-0-12-800645-0. Accessed 05 Dec 2019

  32. Y. Hou et al., A 61-nW level-crossing ADC with adaptive sampling for biomedical applications. IEEE Trans. Circuits Syst. II Express Briefs 66(1), 56–60 (2018)

    Article  Google Scholar 

  33. S. M. Qaisar, D. Dallet, S. Benjamin, P. Desprez, and R. Yahiaoui, Power efficient analog to digital conversion for the Li-ion battery voltage monitoring and measurement. In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (2013), pp. 1522–1525

    Google Scholar 

  34. S. M. Qaisar, R. Yahiaoui, and D. Dominique, A smart power management system monitoring and measurement approach based on a signal driven data acquisition. In 2015 Saudi Arabia Smart Grid (SASG), (2015), pp. 1–4

    Google Scholar 

  35. S. M. Qaisar, A Computationally Efficient EEG Signals Segmentation and De-noising Based on an Adaptive Rate Acquisition and Processing. In 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), (2018), pp. 182–186

    Google Scholar 

  36. S.M. Qaisar, L. Fesquet, M. Renaudin, Adaptive rate filtering a computationally efficient signal processing approach. Signal Process. 94, 620–630 (2014)

    Article  Google Scholar 

  37. V.K. Ingle, J.G. Proakis, Digital Signal Processing Using Matlab: A Problem Solving Companion (Cengage Learning, Boston, 2016)

    Google Scholar 

  38. B.A. Moser, Similarity recovery from threshold-based sampling under general conditions. IEEE Trans. Signal Process. 65(17), 4645–4654 (2017)

    Article  MathSciNet  Google Scholar 

  39. M. Paluszek, S. Thomas, MATLAB Machine Learning (Apress, New York, 2016)

    Google Scholar 

  40. S.K. Singh, R. Bose, A. Joshi, Energy theft detection for AMI using principal component analysis based reconstructed data. IET Cyber-Phys. Syst. Theory Appl. 4(2), 179–185 (2019)

    Article  Google Scholar 

  41. S. Pawar and B. Momin, Smart electricity meter data analytics: A brief review. (2017), pp. 1–5

    Google Scholar 

Download references

Acknowledgments

This project is funded by the Effat University of Jeddah, under the grant number UC#9/29 April.2020/7.1-22(2)2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mian Qaisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mian Qaisar, S., Alsharif, F. (2021). Effective Load Pattern Classification by Processing the Smart Meter Data Based on Event-Driven Processing and Machine Learning. In: Nazari-Heris, M., Asadi, S., Mohammadi-Ivatloo, B., Abdar, M., Jebelli, H., Sadat-Mohammadi, M. (eds) Application of Machine Learning and Deep Learning Methods to Power System Problems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-77696-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77696-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77695-4

  • Online ISBN: 978-3-030-77696-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics