Skip to main content

Theoretical and Experimental Principles

  • Chapter
  • First Online:
Stable Isotope Geochemistry

Abstract

Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The term “isotopes” is derived from Greek (meaning equal places) and indicates that isotopes occupy the same position in the periodic table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA 47:623

    Article  Google Scholar 

  • Affek HP, Eiler JM (2006) Abundance of mass 47 CO2 in urban air, car exhaust and human breath. Geochim Cosmochim Acta 70:1–12

    Article  Google Scholar 

  • Affek HP, Bar-Matthews M, Ayalon A, Matthews A, Eiler JM (2008) Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry. Geochim Cosmochim Acta 72:5351–5360

    Article  Google Scholar 

  • Albarede F, Telouk P, Blichert-Toft J, Boyet M, Agrinier A, Nelson B (2004) Precise and accurate isotope measurements using multi-collector ICPMS. Geochim Cosmochim Acta 68:2725–2744

    Article  Google Scholar 

  • Assonov SS, Brenninkmeijer CA (2005) Reporting small Δ17O values: existing definitions and concepts. Rapid Commun Mass Spectrometry 19:627–636

    Article  Google Scholar 

  • Baertschi P (1976) Absolute 18O content of standard mean ocean water. Earth Planet Sci Lett 31:341–344

    Article  Google Scholar 

  • Bao H, Thiemens MH, Farquahar J, Campbell DA, Lee CC, Heine K, Loope DB (2000) Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406:176–178

    Article  Google Scholar 

  • Bao H, Thiemens MH, Heine K (2001) Oxygen-17 excesses of the Central Namib gypcretes: spatial distribution. Earth Planet Sci Letters 192:125–135

    Article  Google Scholar 

  • Baroni M, Thiemens MH, Delmas RJ, Savarino J (2007) Mass-independent sulfur isotopic composition in stratospheric volcanic eruptions. Science 315:84–87

    Article  Google Scholar 

  • Becker JS (2005) Recent developments in isotopic analysis by advanced mass spectrometric techniques. J Anal at Spectrom 20:1173–1184

    Article  Google Scholar 

  • Bigeleisen J (1965) Chemistry of isotopes. Science 147:463–471

    Article  Google Scholar 

  • Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of heavy elements. J Am Chem Soc 118:3676–3680

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    Article  Google Scholar 

  • Bigeleisen J, Wolfsberg M (1958) Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv Chem Phys 1:15–76

    Google Scholar 

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Miner Geochem 69:445–478

    Article  Google Scholar 

  • Bindeman I, Pack A (eds) (2021) Triple oxygen isotope geochemistry. Rev Mineral Geochem 86:1–488

    Google Scholar 

  • Blair N, Leu A, Munoz E, Olsen J, Kwong E, Desmarais D (1985) Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001

    Article  Google Scholar 

  • Blum JD (2011) Applications of stable mercury isotopes to biogeochemistry. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, pp 229–246

    Google Scholar 

  • Blum JD, Johnson MW (2017) Recent developments in mercury stable isotope analysis. Rev Mineral Geochem 82:733–757

    Article  Google Scholar 

  • Bottinga Y (1969) Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet Sci Lett 5:301–307

    Article  Google Scholar 

  • Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Lett 20:250–265

    Article  Google Scholar 

  • Brand W (2002) Mass spectrometer hardware for analyzing stable isotope ratios. In: de Groot P (ed) Handbook of stable isotope analytical techniques. Elsevier, New York

    Google Scholar 

  • Brand W, Geilmann H, Crosson ER, Rella CW (2009) Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures. Rapid Comm Mass Spectrometry 23:1879–1884

    Article  Google Scholar 

  • Bucharenko AI (1995) MIE versus CIE: comparative analysis of magnetic and classical isotope effects. Chem Rev 95:2507–2528

    Article  Google Scholar 

  • Bucharenko AI (2001) Magnetic isotope effect: nuclear spin control of chemical reactions. J Phys Chem A 105:9995–10011

    Article  Google Scholar 

  • Bucharenko AI (2013) Mass-independent isotope effects. J Phys Chem B 117:2231–2238

    Article  Google Scholar 

  • Came RE, Brand U, Affek HP (2014) Clumped isotope signatures in modern brachiopod carbonate. Chem Geol 377:20–30

    Article  Google Scholar 

  • Cao X, Bao H (2017) Redefining the utility of the three-isotope method. Geochim Cosmochim Acta 212:16–32

    Article  Google Scholar 

  • Cerling TE (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet Sci Lett 71:229–240

    Article  Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon fractionation factors applicable to geologic systems. Rev Miner Geochem 43:1–81

    Article  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  Google Scholar 

  • Clayton RN, Kieffer SW (1991) Oxygen isotope thermometer calibrations. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Sam Epstein. Geochem Soc Spec Publ 3:3–10

    Google Scholar 

  • Clayton RN, Grossman L, Mayeda TK (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488

    Article  Google Scholar 

  • Clayton RN, Goldsmith JR, Karel KJ, Mayeda TK, Newton RP (1975) Limits on the effect of pressure in isotopic fractionation. Geochim Cosmochim Acta 39:1197–1201

    Article  Google Scholar 

  • Clayton RN, Goldsmith JR, Mayeda TK (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim Cosmochim Acta 53:725–733

    Article  Google Scholar 

  • Cole DR, Chakraborty S (2011) Rates and mechanisms of isotopic exchange. In: Stable isotope geochemistry. Rev Mineral Geochem 43:83–223

    Google Scholar 

  • Coplen TB (1996) New guidelines for the reporting of stable hydrogen, carbon and oxygen isotope ratio data. Geochim Cosmochim Acta 60:3359–3360

    Article  Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238

    Article  Google Scholar 

  • Coplen TB, Brand W, Gehre M, Gröning M, Meijer HA, Toman B, Verkouteren RM (2006) New guidelines for δ13C measurements. Anal Chem 78:2439–2441

    Article  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  Google Scholar 

  • Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Article  Google Scholar 

  • Craig H, Keeling CD (1963) The effects of atmospheric N2O on the measured isotopic composition of atmospheric CO2. Geochim Cosmochim Acta 27:549–551

    Article  Google Scholar 

  • Criss RE (1999) Principles of stable isotope distribution. Oxford University Press

    Book  Google Scholar 

  • Crowe DE, Valley JW, Baker KL (1990) Micro-analysis of sulfur isotope ratios and zonation by laser microprobe. Geochim Cosmochim Acta 54:2075–2092

    Article  Google Scholar 

  • Daeron M, Blamart D, Peral M, Affek HP (2016) Absolute isotope abundance ratios and the accuracy of Δ47 measurements. Chem Geol 442:83–96

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotope in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dauphas N, Schauble EA (2016) Mass fractionation laws, mass-independent effects and isotope anomalies. Ann Rev Earth Planet Sci 44:709–783

    Article  Google Scholar 

  • Dauphas N, Teng FZ, Arndt NT (2010) Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion and identification of diffusive transport in zoned olivine. Geochim Cosmochim Acta 74:3274–3291

    Article  Google Scholar 

  • De Groot PA (2004) Handbook of stable isotope analytical techniques. Elsevier Amsterdam, Europe

    Google Scholar 

  • Dennis KJ, Schrag DP (2010) Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim Cosmochim Acta 74:4110–4122

    Article  Google Scholar 

  • Driesner T (1997) The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science 277:791–794

    Article  Google Scholar 

  • Eagle RA, Schauble EA, Tripati AK, Tütken T, Hulbert RC, Eiler JM (2010) Body temperatures of modern and extinct vertebrates from 13C–18O bond abundances in bioapatite. PNAS 107:10377–10382

    Article  Google Scholar 

  • Eagle RA, Tütken T, Martin TS, Tripati AK, Fricke HC, Connely M, Cifelli RL, Eiler JM (2011) Dinosaur body temperatures determined from the (13C–18O) ordering in fossil biominerals. Science 333:443–445

    Article  Google Scholar 

  • Eagle RA et al (2015) Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs. Nat Commun 6:8296

    Article  Google Scholar 

  • Eiler JM (2007) The study of naturally-occuring multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327

    Article  Google Scholar 

  • Eiler JM (2013) The isotopic anatomies of molecules and minerals. Ann Rev Earth Planet Sci 41:411–441

    Article  Google Scholar 

  • Eiler JM, Schauble E (2004) 18O13C16O in earth’s atmosphere. Geochim Cosmochim Acta 68:4767–4777

    Article  Google Scholar 

  • Eiler JM, Baumgartner LP, Valley JW (1992) Intercrystalline stable isotope diffusion: a fast grain boundary model. Contr Mineral Petrol 112:543–557

    Article  Google Scholar 

  • Eiler JM, Valley JW, Baumgartner LP (1993) A new look at stable isotope thermometry. Geochim Cosmochim Acta 57:2571–2583

    Article  Google Scholar 

  • Elsenheimer D, Valley JW (1992) In situ oxygen isotope analysis of feldspar and quartz by Nd-YAG laser microprobe. Chem Geol 101:21–42

    Google Scholar 

  • Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt T, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491

    Google Scholar 

  • Epov VN, Malinovskiy D, Vanhaecke F, Begue D, Donard OF (2011) Modern mass spectrometry for studying mass-independent fractionation of heavy stable isotopes in environmental and biological sciences. J Anal Spectrom 26:1142–1156

    Article  Google Scholar 

  • Estrade N, Carignan J, Sonke JE, Donard O (2009) Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim Cosmochim Acta 73:2693–2711

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759

    Article  Google Scholar 

  • Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotope interpretations for biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36

    Article  Google Scholar 

  • Ferry JM, Passey BH, Vasconcelos C, Eiler JM (2011) Formation of dolomite at 40–80°C in the Latemar carbonate buildup, Dolomites, Italy from clumped isotope thermometry. Geology 39:571–574

    Article  Google Scholar 

  • Fiebig J, Wiechert U, Rumble D, Hoefs J (1999) High-precision in-situ oxygen isotope analysis of quartz using an ArF laser. Geochim Cosmochim Acta 63:687–702

    Article  Google Scholar 

  • Fiebig J, Bajnai D, Löffler N, Methner K, Krsnik E, Mulch A, Hofmann S (2019) Combined high-precision Δ48 and Δ47 analysis of carbonates. Chem Geol 522:186–191

    Article  Google Scholar 

  • Fitzsimons ICW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and analytical precision. Min Mag 64:59–83

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Data of geochemistry, 6th edn. Geological States Geological Survey Professional Paper 440-KK

    Google Scholar 

  • Fujii T, Moynier F, Albarede F (2009) The nuclear field shift effect in chemical exchange reactions. Chem Geol 267:139–156

    Article  Google Scholar 

  • Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262

    Article  Google Scholar 

  • Gao YQ, Marcus RA (2001) Strange and unconventional isotope effects in ozone formation. Science 293:259–263

    Article  Google Scholar 

  • Gelabert A, Pokrovsky OS, Viers J, Schott J, Boudou A, Feurtet-Mazel A (2006) Interaction between zinc and marine diatom species: surface complexation and Zn isotope fractionation. Geochim Cosmochim Acta 70:839–857

    Article  Google Scholar 

  • Ghosh P et al (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456

    Article  Google Scholar 

  • Gilbert A, Silvestre V, Robins R, Remaud G (2009) NMR spectroscopy for the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal Chem 81:8975–8985

    Article  Google Scholar 

  • Gilbert A, Yamada K, Suda K, Ueno Y, Yoshida N (2016) Measurement of position-specific 13C isotopic composition of propane at the nanomole level. Geochim Cosmochim Acta 177:205–216

    Article  Google Scholar 

  • Giletti BJ (1986) Diffusion effect on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218–228

    Article  Google Scholar 

  • Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536

    Article  Google Scholar 

  • Gonfiantini R (1984) Advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations. Report Director General IAEA Vienna

    Google Scholar 

  • Grachev AM, Severinghaus JP (2003) Laboratory determination of thermal diffusion constants for 29N/28N2 in air at temperatures from –60 to 0 °C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochim Cosmochim Acta 67:345–360

    Article  Google Scholar 

  • Gupta P, Noone D, Galewsky J, Sweeney C, Vaughn BH (2009) Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Comm Mass Spectrometry 23:2534–2542

    Article  Google Scholar 

  • Hagemann R, Nief G, Roth E (1970) Absolute isotopic scale for deuterium analysis of natural waters. Absolute d/h Ratio for SMOW. Tellus 22:712–715

    Google Scholar 

  • Hayes JM (1983) Practice and principles of isotopic measurements in organic geochemistry. In: Organic geochemistry of contemporaneous and ancient sediments. Great Lakes Section, SEPM, Bloomington, Ind, pp 5-1–5-31

    Google Scholar 

  • Henkes GA, Passey BH, Wanamaker AD, Grossman EI, Ambrose WG, Carroll ML (2013) Carbonate clumped isotope composition of modern marine mollusk and brachiopod shells. Geochim Cosmochim Acta 106:307–325

    Article  Google Scholar 

  • Henkes GA, Passey BH, Grossman EL, Shenton BJ, Perez-Huerta A, Yancey TE (2014) Temperature limits of preservation of primary calcite clumped isotope paleotemperatures. Geochim Cosmochim Acta 139:362–382

    Article  Google Scholar 

  • Hesterberg R, Siegenthaler U (1991) Production and stable isotopic composition of CO2 in a soil near Bern, Switzerland. Tellus 43B:197–205

    Article  Google Scholar 

  • Horita J, Driesner T, Cole DR (1999) Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science 286:1545–1547

    Article  Google Scholar 

  • Horita J, Cole DR, Polyakov VB, Driesner T (2002) Experimental and theoretical study of pressure effects on hydrous isotope fractionation in the system brucite-water at elevated temperatures. Geochim Cosmochim Acta 66:3769–3788

    Article  Google Scholar 

  • Horn I, von Blanckenburg F (2007) Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B 62:410–422

    Google Scholar 

  • Hu G, Clayton RN (2003) Oxygen isotope salt effects at high pressure and high temperature and the calibration of oxygen isotope thermometers. Geochim Cosmochim Acta 67:3227–3246

    Article  Google Scholar 

  • Huberty JM, Kita NT, Kozdon R et al (2010) Crystal orientation effects in δ18O for magnetite and hematite by SIMS. Chem Geol 276:269–283

    Article  Google Scholar 

  • Huntington KW, Eiler JM et al (2009) Methods and limitations of “clumped” CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J Mass Spectrom 44:1318–1329

    Article  Google Scholar 

  • Huntington KW, Budd DA, Wernicke BP, Eiler JM (2011) Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J Sediment Res 81:656–669

    Article  Google Scholar 

  • Huntington KW, Wernicke BP, Eiler JM (2010) Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics 29 TC3005.https://doi.org/10.1029/2009TC002449

  • Jensen ML, Nakai N (1962) Sulfur isotope meteorite standards, results and recommendations. In: Jensen ML (ed) Biogeochemistry of sulfur isotopes. NSF Symp Vol, p 31

    Google Scholar 

  • Junk G, Svec H (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim Cosmochim Acta 14:234–243

    Article  Google Scholar 

  • Kashiwabara T, Takahashi Y, Tanimizu M, Usui A (2011) Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochim Cosmochim Acta 75:5762–5784

    Article  Google Scholar 

  • Kelley SP, Fallick AE (1990) High precision spatially resolved analysis of δ34S in sulphides using a laser extraction technique. Geochim Cosmochim Acta 54:883–888

    Article  Google Scholar 

  • Kieffer SW (1982) Thermodynamic and lattice vibrations of minerals: 5. Application to phase equilibria, isotopic fractionation and high-pressure thermodynamic properties. Rev Geophys Space Phys 20:827–849

    Article  Google Scholar 

  • Kita NT, Hyberty JM, Kozdon R, Beard BL, Valley JW (2010) High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation. Surf Interface Anal 43:427–431

    Article  Google Scholar 

  • Kitchen NE, Valley JW (1995) Carbon isotope thermometry in marbles of the Adirondack Mountains, New York. J Metamorphic Geol 13:577–594

    Article  Google Scholar 

  • Kohn MJ, Valley JW (1998) Obtaining equilibrium oxygen isotope fractionations from rocks: theory and examples. Contr Mineral Petrol 132:209–224

    Article  Google Scholar 

  • Kowalski PM, Jahn S (2011) Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T: an efficient ab initio approach. Geochim Cosmochim Acta 75:6112–6123

    Article  Google Scholar 

  • Kowalski PM, Wunder B, Jahn S (2013) Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochim Cosmochim Acta 101:285–301

    Article  Google Scholar 

  • Luz B, Barkan E, Bender ML, Thiemens MH, Boering KA (1999) Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547–550

    Article  Google Scholar 

  • Maithani S, Pradham M (2020) Cavity ring-down spectroscopy and its applications to environmental, chemical and biomedical systems. J Chem Soc 132:114

    Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1978) Mechanisms of hydrothermal crystallization of quartz at 250 °C and 15 kbar. Geochim Cosmochim Acta 42:173–182

    Article  Google Scholar 

  • Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem 50:1465–1473

    Article  Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983) Oxygen isotope fractionation involving pyroxenes: the calibration of mineral-pair geothermometers. Geochim Cosmochim Acta 47:631–644

    Article  Google Scholar 

  • Mauersberger K, Erbacher B, Krankowsky D, Günther J, Nickel R (1999) Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283:370–372

    Article  Google Scholar 

  • McKibben MA, Riciputi LR (1998) Sulfur isotopes by ion microprobe. In: applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:121–140

    Google Scholar 

  • Méheut M, Lazzari M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first principles calculations density-functional theory. Geochim Cosmochim Acta 71:3170–3181

    Article  Google Scholar 

  • Melander L (1960) Isotope effects on reaction rates. Ronald, New York

    Google Scholar 

  • Melander L, Saunders WH (1980) Reaction rates of isotopic molecules. Wiley, New York

    Google Scholar 

  • Merritt DA, Hayes JM (1994) Nitrogen isotopic analyses of individual amino acids by isotope-ratio-monitoring gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 5:387–397

    Article  Google Scholar 

  • Miller MF (2002) Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66:1881–1889

    Article  Google Scholar 

  • Möller K, Schoenberg R, Pedersen RB, Weiss D, Dong S (2012) Calibration of new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostand Geoanal Res 36:177–199

    Article  Google Scholar 

  • Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys Rev 77:789

    Article  Google Scholar 

  • Nier AO, Ney EP, Inghram MG (1947) A null method for the comparison of two ion currents in a mass spectrometer. Rev Sci Instrum 18:294

    Article  Google Scholar 

  • Northrop DA, Clayton RN (1966) Oxygen isotope fractionations in systems containing dolomite. J Geol 74:174–196

    Article  Google Scholar 

  • O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. In: Stable isotopes in high temperature geological processes. Rev Mineral 16:1–40

    Google Scholar 

  • Oeser M, Dohmen R, Horn I, Schuth S, Weyer S (2015) Processes and time scales of magmatic evolution as revealed by Fe–Mg chemical and isotopic zoning in natural olivines. Geochim Cosmochim Acta 154:130–150

    Article  Google Scholar 

  • Passey BJ, Henkes GA (2012) Carbonate clumped isotope bond reordering and geospeeedometry. Earth Planet Sci Lett 351–352:223–236

    Article  Google Scholar 

  • Passey BJ, Levin NE (2021) Triple oxygen isotopes in carbonates, biological apatites and continental paleoclimate reconstruction. Rev Mineral Geochem 86:429–462

    Article  Google Scholar 

  • Petersen SV, 29 others (2019) Effects of improved 17O correction on interlaboratory agreement in clumped isotope calibrations, estimates of mineral-specific offsets, and temperature dependence of acid digestion fractionation. Geochem Geophys Geosys 20:3495–3519

    Google Scholar 

  • Piasecki A, Sessions A, Lawson M, Ferreira AA, Santos Neto EV, Ellis GS, Lewan MD, Eiler JM (2018) Position-specific 13C distribitions within propane from experiments and natural gas samples. Geochim Cosmochim Acta 220:110–124

    Article  Google Scholar 

  • Pironti C, Cucciniello R, Lamin F, Tonon A, Motta O, Proto A (2017) Determination of the 13C/12C carbon isotope ratio in carbonates and bicarbonates by 13CNMR spectroscopy. Anal Chem 89:11413–11418

    Article  Google Scholar 

  • Poitrasson F, d’Abzac FX (2017) Femto second laser ablation inductively coupled plasma source mass spectrometry for elemental and isotopic analysis: are ultrafast lasers worthwhile? JAAS 32:1075–1091

    Google Scholar 

  • Polyakov VB, Kharlashina NN (1994) Effect of pressure on equilibrium isotope fractionation. Geochim Cosmochim Acta 58:4739–4750

    Article  Google Scholar 

  • Polyakov VB, Horita J, Cole DR (2006) Pressure effects on the reduced partition function ratio for hydrogen isotopes in water. Geochim Cosmochim Acta 70:1904–1913

    Article  Google Scholar 

  • Quade J, Breecker DO, Daeron M, Eiler J (2011) The paleoaltimetry of Tibet: an isotopic perspective. Am J Sci 311:77–115

    Article  Google Scholar 

  • Rayleigh JWS (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philos Mag 42:493

    Article  Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of H, C, N, O, S, and Cl stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110

    Article  Google Scholar 

  • Richter FM (2007) Isotopic fingerprints of mass transport processes. Geochim Cosmochim Acta 71:A839

    Google Scholar 

  • Richter R, Hoernes S (1988) The application of the increment method in comparison with experimentally derived and calculated O-isotope fractionations. Chem Erde 48:1–18

    Google Scholar 

  • Richter FM, Liang Y, Davis AM (1999) Isotope fractionation by diffusion in molten oxides. Geochim Cosmochim Acta 63:2853–2861

    Article  Google Scholar 

  • Richter FM, Davis AM, DePaolo D, Watson BE (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Article  Google Scholar 

  • Richter FM, Dauphas N, Teng FZ (2009) Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103

    Article  Google Scholar 

  • Robins R, Billault I, Duan J, Guiet S, Pionnier S, Zhang BL (2002) Measurement of 2H distribution in natural products by quantitative 2H-NMR: an approach to understanding metabolism and enzyme mechanism? Phytochem Rev 2:87–102

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111

    Article  Google Scholar 

  • Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189

    Article  Google Scholar 

  • Schauble EA (2011) First principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim Cosmochim Acta 75:844–869

    Article  Google Scholar 

  • Schauble EA (2013) Modeling nuclear volume isotope effects in crystals. PNAS 110:17714–17719

    Article  Google Scholar 

  • Schauble EA, Ghosh P, Eiler JM (2006) Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70:2510–2519

    Article  Google Scholar 

  • Schauble E, Méheut M, Hill PS (2009) Combining metal stable isotope fractionation theory with experiments. Elements 5:369–374

    Article  Google Scholar 

  • Scheele N, Hoefs J (1992) Carbon isotope fractionation between calcite, graphite and CO2. Contr Mineral Petrol 112:35–45

    Article  Google Scholar 

  • Schütze H (1980) Der Isotopenindex—eine Inkrementmethode zur näherungsweisen Berechnung von Isotopenaustauschgleichgewichten zwischen kristallinen Substanzen. Chemie Erde 39:321–334

    Google Scholar 

  • Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934

    Article  Google Scholar 

  • Severinghaus JP, Bender ML, Keeling RF, Broecker WS (1996) Fractionation of soil gases by diffusion of water vapor, gravitational settling and thermal diffusion. Geochim Cosmochim Acta 60:1005–1018

    Article  Google Scholar 

  • Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146

    Article  Google Scholar 

  • Shahar A, Schauble EA, Caracas R, Gleason AE, Reagan MM, Xiao Y, Shu J, Mao W (2016) Pressure-dependent isotopic composition of iron alloys. Science 352:580–582

    Article  Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Article  Google Scholar 

  • Sharp ZD (1995) Oxygen isotope geochemistry of the Al2SiO5 polymorphs. Am J Sci 295:1058–1076

    Article  Google Scholar 

  • Sio CK, Dauphas N, Teng FZ, Chaussidon M, Helz RT, Roskosz M (2013) Discerning crystal growth from diffusion profiles in zoned olivine by in-situ Mg–Fe isotope analysis. Geochim Cosmochim Acta 123:302–321

    Article  Google Scholar 

  • Stern MJ, Spindel W, Monse EU (1968) Temperature dependence of isotope effects. J Chem Phys 48:2908

    Article  Google Scholar 

  • Stolper DA, Sessions AL, Ferreira AA, Santos Neto EV, Schimmelmann A, Shusta SS, Valentine DL, Eiler JM (2014) Combined 13C–D and D–D clumping in methane: methods and preliminary results. Geochim Cosmochim Acta 126:169–191

    Article  Google Scholar 

  • Tang J, Dietzel M, Fernandez A, Tripati AK, Rosenheim BE (2014) Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. Geochim Cosmochim Acta 134:120–136

    Article  Google Scholar 

  • Teng FZ, Dauphas N, Helz RT, Gao S, Huang S (2011) Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett 308:317–324

    Article  Google Scholar 

  • Teutsch N, von Gunten U, Hofstetter TB, Halliday AN (2005) Adsorption as a cause for isotope fractionation in reduced groundwater. Geochim Cosmochim Acta 69:4175–4185

    Article  Google Scholar 

  • Thiemens MH (1999) Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345

    Article  Google Scholar 

  • Thiemens MH, Heidenreich JE (1983) The mass independent fractionation of oxygen—a novel isotope effect and its cosmochemical implications. Science 219:1073–1075

    Article  Google Scholar 

  • Thiemens MH, Lin M (2021) Discoveries of mass independent isotope effects in the solar system: past, present and future. Rev Mineral Geochem 86:35–95

    Article  Google Scholar 

  • Thiemens MH, Chakraborty S, Dominguez G (2012) The physical chemistry of mass-independent isotope effects and their observation in nature. Ann Rev Phys Chem 63:155–177

    Article  Google Scholar 

  • Tripati AK, Eagle RA, Thiagarajan N, Gagnon AC, Bauch H, Halloran PR, Eiler JM (2010) 13C–18O isotope signaturesand “clumped isotope” thermometry in foraminifera and coccoliths. Geochim Cosmochim Acta 74:5697–5717

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562

    Article  Google Scholar 

  • Valley JW, Graham C (1993) Cryptic grain-scale heterogeneity of oxygen isotope ratios in metamorphic magnetite. Science 259:1729–1733

    Article  Google Scholar 

  • Valley J, Graham CM, Harte B, Eiler JM, Kinney PD (1998) Ion microprobe analysis of oxygen, carbon and hydrogen isotope ratios. In: applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:73–98

    Google Scholar 

  • Vanhaecke F, Balcaen L, Malinovsky D (2009) Use of single-collector and multi-collector ICP-mass spectrometry for isotope analysis. J Anal Spectrom 24:863–886

    Article  Google Scholar 

  • Vogl J, Pritzkow W (2010) Isotope reference materials for present and future isotope research. J Anal Spectrom 25:923–932

    Article  Google Scholar 

  • Wang Z, Schauble EA, Eiler JM (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gas. Geochim Cosmochim Acta 68:4779–4797

    Article  Google Scholar 

  • Wiechert U, Hoefs J (1995) An excimer laser-based microanalytical preparation technique for in-situ oxygen isotope analysis of silicate and oxide minerals. Geochim Cosmochim Acta 59:4093–4101

    Article  Google Scholar 

  • Wiechert U, Fiebig J, Przybilla R, Xiao Y, Hoefs J (2002) Excimer laser isotope-ratio-monitoring mass spectrometry for in situ oxygen isotope analysis. Chem Geol 182:179–194

    Article  Google Scholar 

  • Yeung LY, Ash JL, Young ED (2015) Biological signatures in clumped isotopes of O2. Science 348:431–434

    Article  Google Scholar 

  • Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104

    Article  Google Scholar 

  • Young ED, Rumble D, Freedman P, Mills M (2016) A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Inter J Mass Spectr 401:1–10

    Article  Google Scholar 

  • Zheng YF (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307

    Article  Google Scholar 

  • Zheng YF (1993a) Oxygen isotope fractionation in SiO2 and Al2SiO5 polymorphs: effect of crystal structure. Eur J Mineral 5:651–658

    Google Scholar 

  • Zheng YF (1993b) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Google Scholar 

  • Zheng YF (1993c) Calculation of oxygen isotope fractionation in hydroxyl-bearing minerals. Earth Planet Sci Lett 120:247–263

    Google Scholar 

  • Zheng YF, Böttcher ME (2016) Oxygen isotope fractionation in double carbonates. Isot Environ Health Stud 52:29–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoefs, J. (2021). Theoretical and Experimental Principles. In: Stable Isotope Geochemistry. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-77692-3_1

Download citation

Publish with us

Policies and ethics