Skip to main content

Theoretical Model for Simulation of Rotational Excitation in Air-Lasing

  • Chapter
  • First Online:
Progress in Photon Science

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 125))

  • 518 Accesses

Abstract

The role of the rotational coherence in the air lasing at 391 nm, corresponding to the coherent \(\mathrm{B}{}^2\Sigma _\mathrm{u}^+(v' = 0)-\mathrm{X}{}^2\Sigma _\mathrm{g}^+(v'' = 0)\) emission of N\(_2^+\) exposed suddenly to an ultrashort intense near-IR laser field, is investigated theoretically by referring to the recent experimental and theoretical studies on the air lasing that elucidated the mechanism of the population inversion between the \(\mathrm{B}{}^2\Sigma _\mathrm{u}^+\) and \(\mathrm{X}{}^2\Sigma _\mathrm{g}^+\) states in terms of the sudden turn-on of the interaction of N\(_2^+\) with the laser field combined with the post-ionization coupling among the \(\mathrm{X}{}^2\Sigma _\mathrm{g}^+\), \(\mathrm{A}{}^2\Pi _\mathrm{u}\), and \(\mathrm{B}{}^2\Sigma _\mathrm{u}^+\) states of N\(_2^+\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Velotta, N. Hay, M.B. Mason, M. Castillejo, J.P. Marangos, High-order harmonic generation in aligned molecules. Phys. Rev. Lett. 87 (2001)

    Google Scholar 

  2. A. Giusti-Suzor, X. He, O. Atabek, F.H. Mies, Above-threshold dissociation of \({\rm H}_{2}^{+}\) in intense laser fields. Phys. Rev. Lett. 64, 515 (1990)

    Article  ADS  Google Scholar 

  3. H. Sakai, C.P. Safvan, J.J. Larsen, K.M. Hilligso/e, K. Hald, H. Stapelfeldt, Controlling the alignment of neutral molecules by a strong laser field. J. Chem. Phys. 110, 10235 (1999)

    Google Scholar 

  4. Q. Luo, W. Liu, S. Chin, Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B 76, 337 (2003)

    Article  ADS  Google Scholar 

  5. A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, High-gain backward lasing in air. Science 331, 442 (2011)

    Article  ADS  Google Scholar 

  6. P.R. Hemmer, R.B. Miles, P. Polynkin, T. Siebert, A.V. Sokolov, P. Sprangle, M.O. Scully, Standoff spectroscopy via remote generation of a backward-propagating laser beam. Proc. Natl. Acad. Sci. USA 108(3130), 21297033 (2011)

    Google Scholar 

  7. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Mysyrowicz, Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses. Opt. Express 22, 12750 (2014)

    Article  ADS  Google Scholar 

  8. G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser. Opt. Lett. 39, 1725 (2014)

    Article  ADS  Google Scholar 

  9. V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G.R. Welch, M.O. Scully, Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere. Proc. Natl. Acad. Sci. 102, 7806 (2005)

    Article  ADS  Google Scholar 

  10. A. Laurain, M. Scheller, P. Polynkin, Low-threshold bidirectional air lasing. Phys. Rev. Lett. 113 (2014)

    Google Scholar 

  11. P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, Y. Liu, Backward Lasing of Air plasma pumped by Circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK). Opt. Express 22, 29964 (2014)

    Article  ADS  Google Scholar 

  12. J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, Z. Xu, Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses. Opt. Express 22, 19005 (2014)

    Article  ADS  Google Scholar 

  13. P. Ding, E. Oliva, A. Houard, A. Mysyrowicz, Y. Liu, Lasing dynamics of neutral nitrogen molecules in femtosecond filaments. Phys. Rev. A 94 (2016)

    Google Scholar 

  14. D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen. Phys. Rev. A 88 (2013)

    Google Scholar 

  15. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S.L. Chin, Y. Cheng, Z. Xu, High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 84 (2011)

    Google Scholar 

  16. H. Zhang, C. Jing, J. Yao, G. Li, B. Zeng, W. Chu, J. Ni, X. Hongqiang, H. Xu, S. Leang Chin, K. Yamanouchi, H. Sun, Z. Xu, Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field. Phys. Rev. X 3 (2013)

    Google Scholar 

  17. Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 21, 22791 (2013)

    Article  ADS  Google Scholar 

  18. T.-J. Wang, J. Ju, J.-F. Daigle, S. Yuan, R. Li, S.L. Chin, Self-seeded forward lasing action from a femtosecond Ti:sapphire laser filament in air. Laser Phys. Lett. 10 (2013)

    Google Scholar 

  19. H. Xu, E. Lötstedt, A. Iwasaki, K. Yamanouchi, Sub-10-fs population inversion in N\(_2\)\(^+\) in air lasing through multiple state coupling. Nat. Commun. 6, 8347 (2015)

    Article  ADS  Google Scholar 

  20. H. Xu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, Alignment-dependent population inversion in \({\rm N}_{2}^{+}\) in intense few-cycle laser fields. Phys. Rev. A 96 (2017)

    Google Scholar 

  21. Y. Zhang, E. Lötstedt, K. Yamanouchi, Mechanism of population inversion in laser-driven \({\rm N}_{2}^{+}\). J. Phys. B At. Mol. Opt. Phys. 52 (2019)

    Google Scholar 

  22. T. Ando, E. Lötstedt, A. Iwasaki, H. Li, Y. Fu, S. Wang, H. Xu, K. Yamanouchi, Rotational, vibrational, and electronic modulations in \({\rm N}_{2}^{+}\) lasing at 391 nm: evidence of coherent \(B^{2}{\rm \Sigma }_{u}^{+}-X^{2}{\rm \Sigma }_{g}^{+}-A^{2}{\rm \Pi }_{u}\) coupling. Phys. Rev. Lett. 123 (2019)

    Google Scholar 

  23. Y. Zhang, E. Lötstedt, K. Yamanouchi, Rotationally induced population inversion between the \(B^{2}{\rm \Sigma }_{u}^{+}\) and \(X^{2}{\rm \Sigma }_{g}^{+}\) states of \({\rm N}_{2}^{+}\) exposed to an intense laser pulse. Phys. Rev. A 101 (2020)

    Google Scholar 

  24. B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, Y. Cheng, Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy. Phys. Rev. A 89 (2014)

    Google Scholar 

  25. H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, Y. Cheng, Coupling of \({\rm N}_{2}^{+}\) rotational states in an air laser from tunnel-ionized nitrogen molecules. Phys. Rev. A 90 (2014)

    Google Scholar 

  26. M. Lei, C. Wu, A. Zhang, Q. Gong, H. Jiang, Population inversion in the rotational levels of the superradiant N\(_2^+\) pumped by femtosecond laser pulses. Opt. Express 25, 4535 (2017)

    Article  ADS  Google Scholar 

  27. A. Azarm, P. Corkum, P. Polynkin, Optical gain in rotationally excited nitrogen molecular ions. Phys. Rev. A 96 (2017)

    Google Scholar 

  28. W. Zheng, Z. Miao, L. Zhang, Y. Wang, C. Dai, A. Zhang, H. Jiang, Q. Gong, C. Wu, Enhanced coherent emission from ionized nitrogen molecules by femtosecond laser pulses. J. Phys. Chem. Lett. 6598 (2019)

    Google Scholar 

  29. H. Xie, H. Lei, G. Li, Q. Zhang, X. Wang, J. Zhao, Z. Chen, J. Yao, Y. Cheng, Z. Zhao, Role of rotational coherence in femtosecond-pulse-driven nitrogen ion lasing. Phys. Rev. Res. 2 (2020)

    Google Scholar 

  30. M. Richter, M. Lytova, F. Morales, S. Haessler, O. Smirnova, M. Spanner, M. Ivanov, Rotational quantum beat lasing without inversion. Optica 7, 586 (2020)

    Article  ADS  Google Scholar 

  31. S. Tamar, Rotational excitation and molecular alignment in intense laser fields. J. Chem. Phys. 103, 7887 (1995)

    Article  Google Scholar 

  32. L. Matsuoka, E. Segawa, Localization in rotational excitation of diatomic molecules induced by a train of optical pulses. Interdiscip. Inf. Sci. 23, 51 (2017)

    MathSciNet  MATH  Google Scholar 

  33. A. Maan, A. Tyagi, V. Prasad, Rotational excitation of diatomic molecule: time dependent study. Acta Phys. Pol. A 133, 1266 (2018)

    Article  ADS  Google Scholar 

  34. T. Szidarovszky, M. Jono, K. Yamanouchi, LIMAO: cross-platform software for simulating laser-induced alignment and orientation dynamics of linear-, symmetric- and asymmetric tops. Comput. Phys. Commun. 228, 219 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Li, M. Hou, H. Zang, Y. Fu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, H. Xu, Significant enhancement of \({\rm N}_{2}^{+}\) lasing by polarization-modulated ultrashort laser pulses. Phys. Rev. Lett. 122 (2019)

    Google Scholar 

  36. P.W. Dooley, I.V. Litvinyuk, K.F. Lee, D.M. Rayner, M. Spanner, D.M. Villeneuve, P.B. Corkum, Direct imaging of rotational wave-packet dynamics of diatomic molecules. Phys. Rev. A 68 (2003)

    Google Scholar 

  37. B. Friedrich, D. Herschbach, Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett. 74, 4623 (1995)

    Article  ADS  Google Scholar 

  38. S.R. Langhoff, C.W. Bauschlicher, H. Partridge, Theoretical study of the N\(_2\)\(^+\) Meinel system. J. Chem. Phys. 87, 4716 (1987)

    Article  ADS  Google Scholar 

  39. S.R. Langhoff, C.W. Bauschlicher Jr., Theoretical study of the first and second negative systems of N\(_2\)\(^+\). J. Chem. Phys. 88, 329 (1988)

    Article  ADS  Google Scholar 

  40. J.M. Brown, A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge Molecular Science (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  41. S.-F. Zhao, C. Jin, A.-T. Le, T.F. Jiang, C.D. Lin, Determination of structure parameters in strong-field tunneling ionization theory of molecules. Phys. Rev. A 81 (2010)

    Google Scholar 

  42. P.J. Bruna, F. Grein, The \(A{^{2}\rm \Pi }_{u}\) state of \(\text{ N}_2^+\): electric properties, fine and hyperfine coupling constants, and magnetic moments (g-factors). A theoretical study. J. Mol. Spectrosc. 250, 75 (2008)

    Article  ADS  Google Scholar 

  43. A. Lofthus, P.H. Krupenie, The spectrum of molecular nitrogen. J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by JSPS KAKENHI grants no. JP15K17805, no. JP24245003, no. JP15H05696, and no. 20H00371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youyuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Lötstedt, E., Yamanouchi, K. (2021). Theoretical Model for Simulation of Rotational Excitation in Air-Lasing. In: Yamanouchi, K., Manshina, A.A., Makarov, V.A. (eds) Progress in Photon Science. Springer Series in Chemical Physics, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-030-77646-6_3

Download citation

Publish with us

Policies and ethics