Skip to main content

User Defined Walking-In-Place Gestures for Intuitive Locomotion in Virtual Reality

  • Conference paper
  • First Online:
Book cover Virtual, Augmented and Mixed Reality (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12770))

Included in the following conference series:

  • 3017 Accesses

Abstract

Locomotion is one of the fundamental interactions in virtual reality (VR). As a simple yet naturalistic way to enable VR locomotion, walking-in-place (WIP) techniques have been actively developed. Even though various WIP gestures have been proposed, they were adopted or designed from the perspective of developers, not the users. This limits the benefits of WIP as unnatural gestures may result in a higher cognitive load to learn and memorize, worse presence, and increased sensory conflict. Therefore, this study elicited natural WIP gestures for forward, sideways, and backward walking directions from users. Twenty participants experienced the movement while wearing the VR headset and elicited the WIP gesture for 8 walking directions. The grouping results showed that Turn body + Stepping-in-place (SIP) and Step one foot + SIP/Rock/Stay were four promising WIP gesture sets for VR locomotion. A comparison between elicited and existing gestures revealed that elicited gestures have the potential to outperform existing gestures due to easier to perform, less fatigue, and higher presence. The generated WIP gesture sets could be used in gesture-based VR applications to provide a better user experience and greater movement options in VR locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers, S.: The year virtual reality gets real (2019). https://www.forbes.com/sites/solrogers/2019/06/21/2019-the-year-virtual-reality-gets-real/. Accessed 03 Jan 2021.

  2. Templeman, J.N., Denbrook, P.S., Sibert, L.E.: Virtual locomotion: walking in place through virtual environments. Presence Teleoper. Virtual Environ. 8, 598–617 (1999). https://doi.org/10.1162/105474699566512

    Article  Google Scholar 

  3. Feasel, J., Whitton, M.C., Wendt, J.D.: LLCM-WIP: low-latency, continuous-motion walking-in-place. In: 2008 IEEE Symposium on 3D User Interfaces, pp. 97–104. IEEE (2008). https://doi.org/10.1109/3DUI.2008.4476598.

  4. Wendt, J.D., Whitton, M.C., Brooks, F.P.: GUD WIP: Gait-understanding-driven walking-in-place. In: 2010 IEEE Virtual Reality Conference (VR), pp. 51–58. IEEE (2010). https://doi.org/10.1109/VR.2010.5444812.

  5. Wilson, P.T., Nguyen, K., Harris, A., Williams, B.: Walking in place using the Microsoft Kinect to explore a large VE. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry - VRCAI ’14, pp. 27–33. ACM Press, New York, New York, USA (2014). https://doi.org/10.1145/2670473.2670492.

  6. Bruno, L., Sousa, M., Ferreira, A., Pereira, J.M., Jorge, J.: Hip-directed walking-in-place using a single depth camera. Int. J. Hum. Comput. Stud. 105, 1–11 (2017). https://doi.org/10.1016/j.ijhcs.2017.03.006

    Article  Google Scholar 

  7. Souman, J.L., et al.: CyberWalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. 8, 1–22 (2011). https://doi.org/10.1145/2043603.2043607

    Article  Google Scholar 

  8. Cakmak, T., Hager, H.: Cyberith virtualizer: a locomotion device for virtual reality. In: ACM SIGGRAPH 2014 Emerging Technologies, SIGGRAPH 2014 (2014). https://doi.org/10.1145/2614066.2614105.

  9. Darken, R.P., Cockayne, W.R., Carmein, D.: The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology - UIST ’97, pp. 213–221. ACM Press, New York, New York, USA (1997). https://doi.org/10.1145/263407.263550.

  10. Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks, F.P.: Walking > walking-in-place > flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’99, pp. 359–364. ACM Press, New York, New York, USA (1999). https://doi.org/10.1145/311535.311589.

  11. Williams, B., Bailey, S., Narasimham, G., Li, M., Bodenheimer, B.: Evaluation of walking in place on a Wii balance board to explore a virtual environment. ACM Trans. Appl. Percept. 8, 1–14 (2011). https://doi.org/10.1145/2010325.2010329

    Article  Google Scholar 

  12. Tregillus, S., Folmer, E.: VR-STEP: walking-in-place using inertial sensing for hands free navigation in mobile VR environments. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1250–1255. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2858036.2858084.

  13. Bhandari, J., Tregillus, S., Folmer, E.: Legomotion: scalable walking-based virtual locomotion. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, pp. 1–8. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3139131.3139133.

  14. Jaeger, B.K., Mourant, R.R.: Comparison of simulator sickness using static and dynamic walking simulators. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 45, 1896–1900 (2001). https://doi.org/10.1177/154193120104502709.

  15. Cherni, H., Métayer, N., Souliman, N.: Literature review of locomotion techniques in virtual reality. Int. J. Virtual Real. 20, 1–20 (2020). https://doi.org/10.20870/IJVR.2020.20.1.3183.

  16. Slater, M., Steed, A., Usoh, M.: The virtual treadmill: a naturalistic metaphor for navigation in immersive virtual environments. In: Göbel, M. (ed.) Virtual Environments ’95. Eurographics, pp. 135–148. Springer, Vienna, Austria (1995). https://doi.org/10.1007/978-3-7091-9433-1_.

  17. Nilsson, N.C., Serafin, S., Laursen, M.H., Pedersen, K.S., Sikstrom, E., Nordahl, R.: Tapping-In-Place: increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), pp. 31–38. IEEE (2013). https://doi.org/10.1109/3DUI.2013.6550193.

  18. Guy, E., Punpongsanon, P., Iwai, D., Sato, K., Boubekeur, T.: LazyNav: 3D ground navigation with non-critical body parts. In: 2015 IEEE Symposium on 3D User Interfaces (3DUI), pp. 43–50. IEEE (2015). https://doi.org/10.1109/3DUI.2015.7131725.

  19. McCullough, M., et al.: Myo arm: swinging to explore a VE. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception - SAP ’15, pp. 107–113. ACM Press, New York, New York, USA (2015). https://doi.org/10.1145/2804408.2804416.

  20. Ang, Y., Sulaiman, P.S., Rahmat, R.W.O.K., Mohd Norowi, N.: Swing-in-place (SIP): a less fatigue walking-in-place method with side-viewing functionality for mobile virtual reality. IEEE Access. 7, 183985–183995 (2019). https://doi.org/10.1109/ACCESS.2019.2960409.

  21. Lee, J., Kim, G.J., Chul Ahn, S., Hwang, J.-I.: MIP-VR: an omnidirectional navigation and jumping method for VR shooting game using IMU. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–3. IEEE (2019). https://doi.org/10.1109/ICCE.2019.8661906.

  22. Norman, D.A.: Natural user interfaces are not natural. Interactions 17, 6 (2010). https://doi.org/10.1145/1744161.1744163

    Article  Google Scholar 

  23. Wu, H., et al.: Understanding freehand gestures: a study of freehand gestural interaction for immersive VR shopping applications. HCIS 9(1), 1–26 (2019). https://doi.org/10.1186/s13673-019-0204-7

    Article  Google Scholar 

  24. Felberbaum, Y., Lanir, J.: Better understanding of foot gestures: an elicitation study. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18, pp. 1–12. ACM Press, New York, New York, USA (2018). https://doi.org/10.1145/3173574.3173908.

  25. Ganapathi, P., Sorathia, K.: Elicitation study of body gestures for locomotion in HMD-VR interfaces in a sitting-position. In: Motion, Interaction and Games on - MIG ’19, pp. 1–10. ACM Press, New York, New York, USA (2019). https://doi.org/10.1145/3359566.3360059.

  26. Vatavu, R.-D., Wobbrock, J.O.: Formalizing agreement analysis for elicitation studies: new measures, significance test, and toolkit. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15, pp. 1325–1334. ACM Press, New York, New York, USA (2015). https://doi.org/10.1145/2702123.2702223.

  27. Chen, Z., et al.: User-defined gestures for gestural interaction: extending from hands to other body parts. Int. J. Hum.-Comput. Interact. 34, 238–250 (2018). https://doi.org/10.1080/10447318.2017.1342943

    Article  Google Scholar 

  28. Ferrario, V.F., Sforza, C., Serrao, G., Grassi, G., Mossi, E.: Active range of motion of the head and cervical spine: a three-dimensional investigation in healthy young adults. J. Orthop. Res. 20, 122–129 (2002). https://doi.org/10.1016/S0736-0266(01)00079-1

    Article  Google Scholar 

  29. Wu, H., Zhang, S., Liu, J., Qiu, J., Zhang, X.: (Luke): The gesture disagreement problem in free-hand gesture interaction. Int. J. Hum.-Comput. Interact. 35, 1102–1114 (2019). https://doi.org/10.1080/10447318.2018.1510607

    Article  Google Scholar 

  30. Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems - CHI 09, p. 1083. ACM Press, New York, New York, USA (2009). https://doi.org/10.1145/1518701.1518866.

  31. Wu, H., Wang, J.: User-defined body gestures for TV-based applications. In: 2012 Fourth International Conference on Digital Home, pp. 415–420. IEEE (2012). https://doi.org/10.1109/ICDH.2012.23.

  32. Wu, H., et al.: Influence of cultural factors on freehand gesture design. Int. J. Hum. Comput. Stud. 143, 102502 (2020). https://doi.org/10.1016/j.ijhcs.2020.102502

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by The Basic Science Research Program through the National Research Foundation of Korea (NRF-2020R1F1A1048510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, W., Shin, E., Xiong, S. (2021). User Defined Walking-In-Place Gestures for Intuitive Locomotion in Virtual Reality. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2021. Lecture Notes in Computer Science(), vol 12770. Springer, Cham. https://doi.org/10.1007/978-3-030-77599-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77599-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77598-8

  • Online ISBN: 978-3-030-77599-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics