Skip to main content

Improving the Functioning of the Cybernetic Control System of the Mechatronic Module of the Robotic Complex

  • Conference paper
  • First Online:
Informatics and Cybernetics in Intelligent Systems (CSOC 2021)

Abstract

The paper proposes a synthesis procedure for a proportional-integral-differential regulator based on the principles of modal control. On a specific example, the effectiveness of the proposed synthesis procedure and possible application in the structure of the control system of the mechatronic module was confirmed #CSOC1120.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egorov, O.D., Poduraev, U.V., Buynov, M.A.: Robotic mechatronic systems. MGTU “Stankin”, Russia, Moscow (2015)

    Google Scholar 

  2. Efimov, A.Y., Gorkaviy, M.A., Solovev V.A.: Identification of dependent energy consumption of an industrial robot in the task of increasing the efficiency of control of an automated technological process. In: Electrical Systems and Complexes, №. 2 (47), pp. 64–71, Russia, Magnitogorsk (2020)

    Google Scholar 

  3. Kyaw, Y.K, Kuznetsova, E.L., Makarenko, A.V.: Complex mathematical modelling of mechatronic modules of promising mobile objects. INCAS Bull. 12, 91–98 (2018). Moscow Aviation Institute (National Research University)

    Google Scholar 

  4. Savelyev, D.O., Gudim, A.S., Solovev, D.B.: Stabilizing the transients in the objects and systems controlling the compensation of nonlinear acs (automatic control system) elements. In: International Science and Technology Conference EastConf, pp. 576–579. Russia. Vladivostok (2019).

    Google Scholar 

  5. Arman, R.: Kinematic analysis on four-bar mechanism model using PID Controller. IOP Conf. Ser. Mater. Sci. Eng. 990, 165–169 (2020)

    Article  Google Scholar 

  6. Zhmud, V., Dimitrov, L., Nosek, J.: Acceleration and increase of reliability of the algorithm for numerical optimization of the PID-regulators for automatic control systems. In: Dolinina, O., et al. (eds.) ICIT 2020. SSDC, vol. 337, pp. 27–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65283-8_3

    Chapter  Google Scholar 

  7. Kuzishchin, V.F., Merzlikina, E.I., Van Va, H.: Performance analysis of control system tuning under inner disturbance influence by means of least square approximation to suboptimal algorithm and calculation using frequency optimality criteria. J. Phys. Conf. Ser. 1683, 1–10 (2020). https://doi.org/10.1088/1742-6596/1683/4/042019

    Article  Google Scholar 

  8. Zhmud, V., Dimitrov, L., Nosek, J.: Effective algorithm to design PID-regulator by numerical optimization. In: International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020, pp. 76–81, Russia, Vladivostok (2020)

    Google Scholar 

  9. Zhmud, V., Roth, H., Hardt, W.: Increase the dynamic accuracy of a system with PID-regulator by numerical optimization. In: International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020, pp. 91–95, Russia, Vladivostok (2020)

    Google Scholar 

  10. Prokopev, A., Nabizhanov, Z., Ivanchura, V., Emelyanov, R.: Parametric synthesis method of PID controllers for high-order control systems. In: Kravets, A.G., Bolshakov, A.A., Shcherbakov, M.V. (eds.) Cyber-Physical Systems: Industry 4.0 Challenges. SSDC, vol. 260, pp. 91–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32648-7_8

    Chapter  Google Scholar 

  11. Gorkaviy, A.I., Gorkaviy, M.A., Melnichenko, M.A., Solovev, D.B.: Synthesis of modal pi-regulator with multiple integration. In: International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019, pp. 124–129, Russia, Vladivostok (2019)

    Google Scholar 

  12. Gorkaviy, A.I., Gorkaviy, M.A., Melnichenko, M.A., Solovev, D.B.: Synthesis of an optimally-modal PI-regulator in a position control system of mechatronic module. In: International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020, pp. 136–141, Russia, Vladivostok (2020)

    Google Scholar 

  13. Buzikayeva, A.V., Susdorf, V.I., Cherniy, S.P.: Modeling multi-cascade fuzzy controller with integrated implementation of various control laws. In: Proceedings - 2019 International Ural Conference on Electrical Power Engineering, UralCon 2019, pp. 38–43. Russia, Chelyabinsk (2019)

    Google Scholar 

  14. Cherniy, S.P., Buzikayeva, A.V., Gudim, A.S.: A model of multi-cascade fuzzy logic controller implemented using different variations of inference algorithms. In: International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019, pp. 91–96. Russia, Vladivostok (2019)

    Google Scholar 

  15. Quakernaak, H., Sivan, R.: Linear Optimal Control Systems. World, Moscow, Russia (1977)

    Google Scholar 

  16. Kuzovkov, N.T.: Modal control and monitoring devices. Mechanical Engineering, Moscow , Russia (1977)

    Google Scholar 

  17. Andrievsky, B.R., Fradkov, A.L.: Theory of Automatic Control with examples in the MATLAB Language. Science, Saint-Petersburg , Russia (1999)

    Google Scholar 

  18. Krasovsky, A.A.: Handbook of Automatic Control Theory. Science, Moscow, Russia, (1987)

    Google Scholar 

  19. Miroshnik, I.V.: The theory of automatic control. Linear Systems. Piter, Saint-Petersburg, Russia (2005)

    Google Scholar 

  20. Gordin, S.A., Zaychenko, I.V., Sokolova, V.S.: Thermal modes of reflux-vapor modeling and control of the rectification process. In: International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019, pp. 45–49. Russia, Vladivostok (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gorkavyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gorkavyy, A.I., Gorkavyy, M.A., Melnichenko, M.A., Berkh, A.V. (2021). Improving the Functioning of the Cybernetic Control System of the Mechatronic Module of the Robotic Complex. In: Silhavy, R. (eds) Informatics and Cybernetics in Intelligent Systems. CSOC 2021. Lecture Notes in Networks and Systems, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-77448-6_67

Download citation

Publish with us

Policies and ethics