Abstract
Inference methods for first-order logic or its fragments are inherently slow. Neural networks make it possible to rapidly approximate the truth values of ground atoms but the results are not explainable and not necessarily accurate. A hybrid neural-symbolic inference method is proposed in this paper. It is a framework for incorporating predicate tensorization techniques into backward chaining and its extensions. Heuristic functions for best-first search strategies for backward chaining are defined via tensor representations of predicates. These strategies speed up inference by reducing backtracking.
Keywords
- Knowledge base
- First-order logic
- Heuristic search
- Neural-symbolic computing
This is a preview of subscription content, access via your institution.
Buying options
References
Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving. Academic press, Cambridge (1973)
Chen, R., Gotsman, C.: Efficient fastest-path computations in road maps. arXiv preprint arXiv:1810.01776 (2018)
Cingillioglu, N., Russo, A.: DeepLogic: towards end-to-end differentiable logical reasoning. In: AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering, vol. 2350. CEUR-WS.org (2019)
Cohen, W., Yang, F., Mazaitis, K.R.: Tensorlog: a probabilistic database implemented using deep-learning infrastructure. J. Artif. Intell. Res. 67, 285–325 (2020)
Dong, H., Mao, J., Lin, T., Wang, C., Li, L., Zhou, D.: Neural logic machines. In: International Conference on Learning Representations (2019)
d’Avila Garcez, A.S., Gori, M., Lamb, L.C., Serafini, L., Spranger, M., Tran, S.N.: Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning. J. Appl. Logics 6(4), 611–632 (2019)
Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. arXiv preprint arXiv:1006.4442 (2010)
Knuth, D.E.: Art of Programming, vol. 2: Seminumerical Algorithms, vol. 2. Addison-Wesley, Boston (1998)
Lamb, L.C., d’Avila Garcez, A.S., Gori, M., Prates, M.O.R., Avelar, P.H.C., Vardi, M.Y.: Graph neural networks meet neural-symbolic computing: a survey and perspective. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 4877–4884 (2020)
Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: DeepProbLog: neural probabilistic logic programming. In: Advances in Neural Information Processing Systems, pp. 3749–3759 (2018)
Marcus, G.: The next decade in AI: four steps towards robust artificial intelligence. arXiv preprint arXiv:2002.06177 (2020)
Marra, G., Giannini, F., Diligenti, M., Gori, M.: Integrating learning and reasoning with deep logic models. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 517–532 (2019)
McCune, W.: Otter 3.3 reference manual and guide. Technical report, Argonne National Laboratory (2003)
Minervini, P., Bosnjak, M., Rocktäschel, T., Riedel, S., Grefenstette, E.: Differentiable reasoning on large knowledge bases and natural language. In: Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges, pp. 125–142. IOS Press (2020)
Nilsson, N.J.: Principles of Artificial Intelligence. Morgan Kaufmann, Massachusetts (2014)
Rocktäschel, T.: Combining representation learning with logic for language processing. CoRR (2017). http://arxiv.org/abs/1712.09687
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Press, 3rd edn. (2009)
Sakharov, A.: Hierarchical rules for knowledge representation and learning. In: IEEE 2nd International Conference on Artificial Intelligence and Knowledge Engineering, pp. 167–171 (2019)
Sakharov, A.: Hierarchical resolution for structured predicate definitions. In: 11th Hellenic Conference on Artificial Intelligence, pp. 202–210 (2020)
Sakharov, A.: A best-first backward-chaining search strategy based on learned predicate representations. In: 13th International Conference on Agents and Artificial Intelligence, vol. 2, pp. 982–989 (2021)
Serafini, L., d’Avila Garcez, A.S.: Logic tensor networks: deep learning and logical reasoning from data and knowledge. In: 11th International Workshop on Neural-Symbolic Learning and Reasoning, vol. 1768. CEUR-WS.org (2016)
Shen, Y.D., Yuan, L.Y., You, J.H.: Loop checks for logic programs with functions. Theor. Comput. Sci. 266(1–2), 441–461 (2001)
Stickel, M.E.: A Prolog technology theorem prover: a new exposition and implementation in Prolog. Theor. Comput. Sci. 104(1), 109–128 (1992)
Swift, T.: Design patterns for tabled logic programming. In: Abreu, S., Seipel, D. (eds.) Applications of Declarative Programming and Knowledge Management. INAP 2009. Lecture Notes in Computer Science, vol. 6547, pp. 1–19. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-20589-7_1
Van Krieken, E., Acar, E., Van Harmelen, F.: Semi-supervised learning using differentiable reasoning. J. Appl. Logics 6(4), 633–651 (2019)
Zhang, Y., et al.: Efficient probabilistic logic reasoning with graph neural networks. In: International Conference on Learning Representations (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sakharov, A. (2021). Heuristic Backward Chaining Based on Predicate Tensorization. In: Silhavy, R. (eds) Artificial Intelligence in Intelligent Systems. CSOC 2021. Lecture Notes in Networks and Systems, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-77445-5_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-77445-5_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77444-8
Online ISBN: 978-3-030-77445-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)