Skip to main content

Popularity-Based Hierarchical Caching for Next Generation Content Delivery Networks

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2021)

Abstract

More than half of the content over the Internet is carried by content delivery networks (CDNs). CDNs cache popular and most requested contents on the edges of the network. Thus helping to increase Quality of Experience (QoE), e.g., by decreasing time to first byte (TTFB) for different contents. In the present paper, we focus on developing a hierarchical caching structure for CDNs to improve their QoE. We focus on unpopular content here, since it accounts for a big portion of content over the Internet. Our novel data-driven method forms caching clusters or hierarchies to deal with unpopular contents. In order to form our clusters and assign edge servers into these clusters, we consider the pattern in which contents have been requested including the total number of requests, similar objects between two edge servers, and requests for those objects. Using \({tf-idf}\) method, which is widely used in information retrieval, we find the similarities between requests landed on each of our edge servers and use these similarities to form clusters using the Markov Clustering algorithm. We evaluate our approach using different hierarchical models, and with real-world requests from a large-scale global CDN. We demonstrate that our hierarchical caching approach improves cache hit ratio by \({9.05\%}\). Additionally, a \({7.39\%}\) decrease in TTFB is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ager, B., Schneider, F., Kim, J., Feldmann, A.: Revisiting cacheability in times of user generated content. In: 2010 INFOCOM IEEE Conference on Computer Communications Workshops, pp. 1–6. IEEE (2010)

    Google Scholar 

  2. Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., Ramakrishnan, K.K.: Optimal content placement for a large-scale VoD system. IEEE/ACM Trans. Netw. 24(4), 2114–2127 (2015)

    Article  Google Scholar 

  3. Bastug, E., Bennis, M., Debbah, M.: Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014)

    Article  Google Scholar 

  4. Bilen, T., Canberk, B.: Handover-aware content replication for mobile-CDN. IEEE Netw. Lett. 1(1), 10–13 (2018)

    Article  Google Scholar 

  5. Borst, S., Gupta, V., Walid, A.: Distributed caching algorithms for content distribution networks. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9. IEEE (2010)

    Google Scholar 

  6. Brohee, S., Van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 7(1), 488 (2006). https://doi.org/10.1186/1471-2105-7-488

    Article  Google Scholar 

  7. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., Moon, S.: I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 1–14 (2007)

    Google Scholar 

  8. Che, H., Tung, Y., Wang, Z.: Hierarchical web caching systems: modeling, design and experimental results. IEEE J. Sel. Areas Commun. 20(7), 1305–1314 (2002)

    Article  Google Scholar 

  9. Cho, K., Lee, M., Park, K., Kwon, T.T., Choi, Y., Pack, S.: Wave: popularity-based and collaborative in-network caching for content-oriented networks. In: 2012 Proceedings IEEE INFOCOM Workshops, pp. 316–321. IEEE (2012)

    Google Scholar 

  10. Cisco: Cisco annual internet report (2018–2023) white paper (2020). https://bit.ly/3e8MYuk

  11. Dai, J., Hu, Z., Li, B., Liu, J., Li, B.: Collaborative hierarchical caching with dynamic request routing for massive content distribution. In: 2012 Proceedings IEEE INFOCOM, pp. 2444–2452. IEEE (2012)

    Google Scholar 

  12. Dehghan, M., et al.: On the complexity of optimal routing and content caching in heterogeneous networks. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 936–944. IEEE (2015)

    Google Scholar 

  13. ElSawy, H., Hossain, E., Haenggi, M.: Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surv. Tutor. 15(3), 996–1019 (2013)

    Article  Google Scholar 

  14. Lee, D., et al.: LRFU: a spectrum of policies that subsumes the least recently used and least frequently used policies. IEEE Trans. Comput. 12, 1352–1361 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Li, L., Stoeckert, C.J., Roos, D.S.: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13(9), 2178–2189 (2003)

    Article  Google Scholar 

  16. Liu, D., Chen, B., Yang, C., Molisch, A.F.: Caching at the wireless edge: design aspects, challenges, and future directions. IEEE Commun. Mag. 54(9), 22–28 (2016)

    Article  Google Scholar 

  17. Maddah-Ali, M.A., Niesen, U.: Fundamental limits of caching. IEEE Trans. Inf. Theory 60(5), 2856–2867 (2014)

    Article  MathSciNet  Google Scholar 

  18. Megiddo, N., Modha, D.S.: ARC: a self-tuning, low overhead replacement cache. Fast 3, 115–130 (2003)

    Google Scholar 

  19. Mokhtarian, K., Jacobsen, H.A.: Caching in video CDNs: building strong lines of defense. In: Proceedings of the Ninth European Conference on Computer Systems, pp. 1–13 (2014)

    Google Scholar 

  20. Najaflou, N., Arış, A., Canberk, B., Aydın, Z.G.: The nearest origin-shield (NOS): a jitter-free overlay routing framework for content delivery networks. In: 2019 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. IEEE (2019)

    Google Scholar 

  21. Park, S.Y., Jung, D., Kang, J.U., Kim, J.S., Lee, J.: CFLRU: a replacement algorithm for flash memory. In: Proceedings of the 2006 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, pp. 234–241 (2006)

    Google Scholar 

  22. Paschos, G.S., Iosifidis, G., Tao, M., Towsley, D., Caire, G.: The role of caching in future communication systems and networks. IEEE J. Sel. Areas Commun. 36(6), 1111–1125 (2018)

    Article  Google Scholar 

  23. Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM Comput. Surv. (CSUR) 35(4), 374–398 (2003)

    Article  Google Scholar 

  24. Poularakis, K., Tassiulas, L.: On the complexity of optimal content placement in hierarchical caching networks. IEEE Trans. Commun. 64(5), 2092–2103 (2016)

    Article  Google Scholar 

  25. Rabinovich, M., Spatscheck, O.: Web Caching and Replication, vol. 67. Addison-Wesley, Boston (2002)

    Google Scholar 

  26. Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, New Jersey, USA, vol. 242, pp. 133–142 (2003)

    Google Scholar 

  27. Satuluri, V., Parthasarathy, S.: Symmetrizations for clustering directed graphs. In: Proceedings of the 14th International Conference on Extending Database Technology, pp. 343–354 (2011)

    Google Scholar 

  28. Traverso, S., Huguenin, K., Trestian, I., Erramilli, V., Laoutaris, N., Papagiannaki, K.: Tailgate: handling long-tail content with a little help from friends. In: Proceedings of the 21st International Conference on World Wide Web, pp. 151–160 (2012)

    Google Scholar 

  29. Van Dongen, S., Abreu-Goodger, C.: Using mcl to extract clusters from networks. In: van Helden, J., Toussaint, A., Thieffry, D. (eds.) Bacterial Molecular Networks, vol. 804, pp. 281–295. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-61779-361-5_15

    Chapter  Google Scholar 

  30. Van Dongen, S.M.: Graph clustering by flow simulation. Ph.D. thesis (2000)

    Google Scholar 

  31. Wang, X., Chen, M., Taleb, T., Ksentini, A., Leung, V.C.: Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 131–139 (2014)

    Article  Google Scholar 

  32. Wessels, D.: Web Caching. O’Reilly Media, Inc., Sebastopol (2001)

    Google Scholar 

  33. Yang, C., Yao, Y., Chen, Z., Xia, B.: Analysis on cache-enabled wireless heterogeneous networks. IEEE Trans. Wirel. Commun. 15(1), 131–145 (2015)

    Article  Google Scholar 

  34. Zeydan, E., et al.: Big data caching for networking: moving from cloud to edge. IEEE Commun. Mag. 54(9), 36–42 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Najaflou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Najaflou, N., Sezer, S., Aydın, Z.G., Canberk, B. (2021). Popularity-Based Hierarchical Caching for Next Generation Content Delivery Networks. In: Vo, NS., Hoang, VP., Vien, QT. (eds) Industrial Networks and Intelligent Systems. INISCOM 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 379. Springer, Cham. https://doi.org/10.1007/978-3-030-77424-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77424-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77423-3

  • Online ISBN: 978-3-030-77424-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics