Skip to main content

A Knowledge Graph-Based Approach for Situation Comprehension in Driving Scenarios

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12731))

Included in the following conference series:

Abstract

Making an informed and right decision poses huge challenges for drivers in day-to-day traffic situations. This task vastly depends on many subjective and objective factors, including the current driver state, her destination, personal preferences and abilities as well as surrounding environment. In this paper, we present CoSI (Context and Situation Intelligence), a Knowledge Graph (KG)-based approach for fusing and organizing heterogeneous types and sources of information. The KG serves as a coherence layer representing information in the form of entities and their inter-relationships augmented with additional semantic axioms. Harnessing the power of axiomatic rules and reasoning capabilities enables inferring additional knowledge from what is already encoded. Thus, dedicated components exploit and consume the semantically enriched information to perform tasks such as situation classification, difficulty assessment, and trajectory prediction. Further, we generated a synthetic dataset to simulate real driving scenarios with a large range of driving styles and vehicle configurations. We use KG embedding techniques based on a Graph Neural Network (GNN) architecture for a classification task of driving situations and achieve over 95% accuracy whereas vector-based approaches achieve only 75% accuracy for the same task. The results suggest that the KG-based information representation combined with GNN are well suited for situation understanding tasks as required in driver assistance and automated driving systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/User_profile.

  2. 2.

    https://en.wikipedia.org/wiki/Preference.

  3. 3.

    https://schema.org/, https://www.w3.org/TR/vocab-ssn/.

  4. 4.

    https://www.eclipse.org/sumo/.

  5. 5.

    https://github.com/siwer/Retra.

  6. 6.

    https://gitlab.com/wxwilcke/mrgcn.

  7. 7.

    https://www.stardog.com, https://www.ontotext.com, https://www.cambridgesemantics.com.

References

  1. Bazilinskyy, P., Petermeijer, S.M., Petrovych, V., Dodou, D., Winter, J.D.: Take-over requests in highly automated driving: a crowdsourcing survey on auditory, vibrotactile, and visual displays. Transp. Res. Part F-Traffic Psychol. Behav. 56, 82–98 (2018)

    Article  Google Scholar 

  2. Becker, J., Helmle, M., Pink, O.: System architecture and safety requirements for automated driving (2017)

    Google Scholar 

  3. Becker, J., Kammel, S., Pink, O., Fausten, M.: Bosch’s approach toward automated driving. at - Automatisierungstechnik 63, 180–190 (2015)

    Article  Google Scholar 

  4. Bengler, K., Dietmayer, K., Färber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6, 6–22 (2014)

    Article  Google Scholar 

  5. Bolle, M., Knoop, S., Niewels, F., Schamm, T.: Early level 4/5 automation by restriction of the use-case. In: Internationales Stuttgarter Symposium (2017)

    Google Scholar 

  6. Buechel, M., Hinz, G., Ruehl, F., Schroth, H., Gyoeri, C., Knoll, A.: Ontology-based traffic scene modeling, traffic regulations dependent situational awareness and decision-making for automated vehicles. In: IEEE IV, pp. 1471–1476 (2017)

    Google Scholar 

  7. Campbell, K.: The shrp 2 naturalistic driving study: Addressing driver performance and behavior in traffic safety (2012)

    Google Scholar 

  8. Chen, C., et al.: Gated residual recurrent graph neural networks for traffic prediction. In: AAAI (2019)

    Google Scholar 

  9. Datta, S.K., Costa, R.P.F.D., Härri, J., Bonnet, C.: Integrating connected vehicles in internet of things ecosystems: challenges and solutions. In: 17th International Symposium on WoWMoM, Portugal, pp. 1–6. IEEE Computer Society (2016)

    Google Scholar 

  10. Di, S., Zhang, H., Li, C.G., Mei, X., Prokhorov, D., Ling, H.: Cross-domain traffic scene understanding: a dense correspondence-based transfer learning approach. IEEE Trans. Intell. Transp. Syst. 19, 745–757 (2018)

    Article  Google Scholar 

  11. Diehl, F., Brunner, T., Truong-Le, M., Knoll, A.: Graph neural networks for modelling traffic participant interaction. In: IEEE IV, pp. 695–701 (2019)

    Google Scholar 

  12. Ding, C., Mao, Y., Wang, W., Baumann, M.: Driving situation awareness in transport operations. In: Computational Intelligence for Traffic and Mobilit (2013). https://doi.org/10.2991/978-94-91216-80-0_3

  13. Ding, W., Chen, J., Shen, S.: Predicting vehicle behaviors over an extended horizon using behavior interaction network. In: ICRA, pp. 8634–8640 (2019)

    Google Scholar 

  14. Erdmann, J.: Lane-changing model in sumo. In: SUMO2014. Reports of the DLR-Institute of Transportation Systems Proceedings, vol. 24, pp. 77–88. Deutsches Zentrum für Luft- und Raumfahrt e.V., May 2014. https://elib.dlr.de/89233/

  15. Gao, J., et al.: VectorNet: encoding HD maps and agent dynamics from vectorized representation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11522–11530 (2020)

    Google Scholar 

  16. Guo, J., Kurup, U., Shah, M.: Is it safe to drive? An overview of factors, metrics, and datasets for driveability assessment in autonomous driving. IEEE Trans. Intell. Transp. Syst. 21(8), 3135–3151 (2020)

    Article  Google Scholar 

  17. Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semant. Web 10(1), 9–32 (2019)

    Article  Google Scholar 

  18. Hamid, S.A., Hassanein, H.S., Takahara, G.: Vehicle as a resource (VAAR). IEEE Netw. 29(1), 12–17 (2015)

    Article  Google Scholar 

  19. Huang, L., Liang, H., Yu, B., Li, B., Zhu, H.: Ontology-based driving scene modeling, situation assessment and decision making for autonomous vehicles. In: 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 57–62 (2019)

    Google Scholar 

  20. Hügle, M., Kalweit, G., Mirchevska, B., Werling, M., Boedecker, J.: Dynamic input for deep reinforcement learning in autonomous driving. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7566–7573 (2019)

    Google Scholar 

  21. Hülsen, M., Zöllner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. In: IEEE IV Symposium, pp. 993–999 (2011)

    Google Scholar 

  22. Kalra, N., Paddock, S.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A-Policy Pract. 94, 182–193 (2016)

    Article  Google Scholar 

  23. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th ICLR (2017). https://openreview.net/forum?id=SJU4ayYgl

  24. Krauss, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of traffic flow. Phys. Rev. E 55, 5597–5602 (1997)

    Article  Google Scholar 

  25. Kusano, K., Gabler, H.C.: Safety benefits of forward collision warning, brake assist, and autonomous braking systems in rear-end collisions. IEEE Trans. Intell. Transp. Syst. 13, 1546–1555 (2012)

    Article  Google Scholar 

  26. Lefèvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J. 1, 1–14 (2014)

    Article  Google Scholar 

  27. Lenz, D., Diehl, F., Truong-Le, M., Knoll, A.C.: Deep neural networks for Markovian interactive scene prediction in highway scenarios. In: IEEE Intelligent Vehicles Symposium, IV 2017, pp. 685–692. IEEE (2017)

    Google Scholar 

  28. Li, M., Cao, H., Song, X., Huang, Y., Wang, J., Huang, Z.: Shared control driver assistance system based on driving intention and situation assessment. IEEE Trans. Industr. Inf. 14, 4982–4994 (2018)

    Article  Google Scholar 

  29. Mirchevska, B., Pek, C., Werling, M., Althoff, M., Boedecker, J.: High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning. In: 21st ITSC, pp. 2156–2162 (2018)

    Google Scholar 

  30. Mukadam, M., Cosgun, A., Nakhaei, A., Fujimura, K.: Tactical decision making for lane changing with deep reinforcement learning (2017)

    Google Scholar 

  31. Petersen, N., Halilaj, L., Grangel-González, I., Lohmann, S., Lange, C., Auer, S.: Realizing an RDF-based information model for a manufacturing company – a case study. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 350–366. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_31

    Chapter  Google Scholar 

  32. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

    MATH  Google Scholar 

  33. Röckl, M., Robertson, P., Frank, K., Strang, T.: An architecture for situation-aware driver assistance systems. In: IEEE 65th Vehicular Technology Conference - VTC-Spring, pp. 2555–2559 (2007)

    Google Scholar 

  34. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  35. Schukraft, M., Rothermel, S., Luettin, J., Halilaj, L.: Towards a rule-based approach for estimating the situation difficulty in driving scenarios. In: 7th International Conference on Vehicle Technology and Intelligent Transport System (VEHITS) (2021, to appear)

    Google Scholar 

  36. Takahashi, R., Naoya Inoue, Y.K., Kobayashi, S., Inui, K.: Explaining potential risks in traffic scenes by combining logical inference and physical simulation, vol. 6, pp. 248–255 (2016)

    Google Scholar 

  37. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 18th ITSC, Gran Canaria, Spain, pp. 982–988. IEEE (2015)

    Google Scholar 

  38. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: sequence to sequence for sets. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016 (2016)

    Google Scholar 

  39. Wang, C., Winner, H.: Overcoming challenges of validation automated driving and identification of critical scenarios. In: IEEE ITSC, pp. 2639–2644 (2019)

    Google Scholar 

  40. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017)

    Article  Google Scholar 

  41. Wilcke, W.X., Bloem, P., de Boer, V., t Veer, R., van Harmelen, F.: End-to-end entity classification on multimodal knowledge graphs abs/2003.12383 (2020)

    Google Scholar 

  42. Wishart, J., et al.: Driving safety performance assessment metrics for ads-equipped vehicles (2020)

    Google Scholar 

  43. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Advances in Neural Information Processing System, vol. 30 (2017)

    Google Scholar 

  44. Zofka, M.R., Klemm, S., Kuhnt, F., Schamm, T., Zöllner, J.M.: Testing and validating high level components for automated driving: simulation framework for traffic scenarios. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 144–150 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavdim Halilaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halilaj, L., Dindorkar, I., Lüttin, J., Rothermel, S. (2021). A Knowledge Graph-Based Approach for Situation Comprehension in Driving Scenarios. In: Verborgh, R., et al. The Semantic Web. ESWC 2021. Lecture Notes in Computer Science(), vol 12731. Springer, Cham. https://doi.org/10.1007/978-3-030-77385-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77385-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77384-7

  • Online ISBN: 978-3-030-77385-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics