Skip to main content

Astrocytes in Bipolar Disorder

  • Chapter
  • First Online:
Astrocytes in Psychiatric Disorders

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 26))

Abstract

Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akula N, Barb J, Jiang X, Wendland JR, Choi KH, Sen SK, Hou L, Chen DTW, Laje G, Johnson K, Lipska BK, Kleinman JE, Corrada-Bravo H, Detera-Wadleigh S, Munson PJ, McMahon FJ (2014) RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. Mol Psychiatry 19:1179–1185

    Google Scholar 

  • Alda M (2015) Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry 20:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandra IM, Constanze D, Klaus-Armin N (2018) An emerging role of dysfunctional axon-oligodendrocyte coupling in neurodegenerative diseases. Dialogues Clin Neurosci 20:283–292

    Article  Google Scholar 

  • Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, Hellemann G, Vinters HV (2010) Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 12:541–549

    Article  PubMed  Google Scholar 

  • Azim K, Butt AM (2011) GSK3beta negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59:540–553

    Article  PubMed  Google Scholar 

  • Barca-Mayo O, Boender AJ, Armirotti A, De Pietri Tonelli D (2020) Deletion of astrocytic BMAL1 results in metabolic imbalance and shorter lifespan in mice. Glia 68:1131–1147

    Article  PubMed  Google Scholar 

  • Barros LF (2013) Metabolic signaling by lactate in the brain. Trends Neurosci 36:396–404

    Article  CAS  PubMed  Google Scholar 

  • Benedetti F, Bollettini I, Barberi I, Radaelli D, Poletti S, Locatelli C, Pirovano A, Lorenzi C, Falini A, Colombo C, Smeraldi E (2013) Lithium and GSK3-beta promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology 38:313–327

    Article  CAS  PubMed  Google Scholar 

  • Beneyto M, Meador-Woodruff JH (2008) Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in Schizophrenia and bipolar disorder. Neuropsychopharmacology 33:2175–2186

    Article  CAS  PubMed  Google Scholar 

  • Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH (2007) Abnormal glutamate receptor expression in the medial temporal lobe in Schizophrenia and mood disorders. Neuropsychopharmacology 32:1888–1902

    Google Scholar 

  • Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16:634–646

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (2014) Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 357:477–492

    Article  CAS  PubMed  Google Scholar 

  • Besing RC, Rogers CO, Paul JR, Hablitz LM, Johnson RL, McMahon LL, Gamble KL (2017) GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus 27:890–898

    Google Scholar 

  • Bezchlibnyk YB, Sun X, Wang J-F, MacQueen GM, McEwen BS, Young LT (2007) Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder. J Psychiatr Neurosci 32:203–210

    Google Scholar 

  • Birey F, Kloc M, Chavali M, Hussein I, Wilson M, Christoffel DJ, Chen T, Frohman MA, Robinson JK, Russo SJ, Maffei A, Aguirre A (2015) Genetic and stress-induced loss of NG2 Glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88:941–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouras C, Kövari E, Hof PR, Riederer BM, Giannakopoulos P (2001) Anterior cingulate cortex pathology in schizophrenia and bipolar disorder. Acta Neuropathol 102:373–379

    Article  CAS  PubMed  Google Scholar 

  • Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, Hastings MH (2019) Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG Jr, Renshaw PF, Ongür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35:834–846

    Google Scholar 

  • Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    Article  PubMed  Google Scholar 

  • Brusotti G, Montanari R, Capelli D, Cattaneo G, Laghezza A, Tortorella P, Loiodice F, Peiretti F, Bonardo B, Paiardini A, Calleri E, Pochetti G (2017) Betulinic acid is a PPARγ antagonist that improves glucose uptake, promotes osteogenesis and inhibits adipogenesis. Sci Rep 7:5777

    Article  PubMed  PubMed Central  Google Scholar 

  • Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22:205–213

    Article  CAS  PubMed  Google Scholar 

  • Butt AM, Kiff J, Hubbard P, Berry M (2002) Synantocytes: new functions for novel NG2 expressing glia. J Neurocytol 31:551–565

    Article  CAS  PubMed  Google Scholar 

  • Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in white matter. Glia 62:1762–1779

    Article  PubMed  Google Scholar 

  • Carbone M, Duty S, Rattray M (2012) Riluzole elevates GLT-1 activity and levels in striatal astrocytes. Neurochem Int 60:31–38

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AF, Firth J, Vieta E (2020) Bipolar Disorder. N Engl J Med 383:58–66

    Article  CAS  PubMed  Google Scholar 

  • Chen TJ, Kula B, Nagy B, Barzan R, Gall A, Ehrlich I, Kukley M (2018) In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell Rep 25:852-861.e7

    Article  PubMed  Google Scholar 

  • Cotovio G, Talmasov D, Barahona-Corrêa JB, Hsu J, Senova S, Ribeiro R, Soussand L, Velosa A, Silva VCE, Rost N, Wu O, Cohen AL, Oliveira-Maia AJ, Fox MD (2020) Mapping mania symptoms based on focal brain damage. J Clin Invest 130:5209–5222

    Article  PubMed  PubMed Central  Google Scholar 

  • Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004) Brain metabolic alterations in medication-free patients with bipolar disordeR. Arch Gen Psychiatry 61:450–458

    Article  CAS  PubMed  Google Scholar 

  • De Almeida Souza A, Da Silva GSS, Velez BS, Santoro ABM, Montero-Lomelí M (2010) Glycogen synthesis in brain and astrocytes is inhibited by chronic lithium treatment. Neurosci Lett 482:128–132

    Article  Google Scholar 

  • De Almeida MMA, Souza CDS, Dourado NS, Da Silva AB, Ferreira RS, David JM, David JP, Costa MFD, Da Silva VDA, Butt AM, Costa SL (2020) Phytoestrogen Agathisflavone Ameliorates Neuroinflammation-induced by LPS and IL-1β and protects neurons in Cocultures of Glia/neurons. Biomolecules 10:562

    Article  PubMed Central  Google Scholar 

  • De Sousa RT, Loch AA, Carvalho AF, Brunoni AR, Haddad MR, Henter ID, Zarate CA, Machado-Vieira R (2017) Genetic studies on the tripartite glutamate synapse in the pathophysiology and therapeutics of mood disorders. Neuropsychopharmacology 42:787–800

    Article  PubMed  Google Scholar 

  • Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z, Luckenbaugh DA, Salvadore G, Machado-Vieira R, Manji HK, Zarate CA Jr (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi Y, Pandey GN (2008) Adenylyl cyclase-cyclicAMP signaling in mood disorders: role of the crucial phosphorylating enzyme protein kinase A. Neuropsychiatr Dis Treat 4:161–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastwood SL, Harrison PJ (2010) Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry 67:1010–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen W-T, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner I-B, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325

    Google Scholar 

  • Fan TWM, Yuan P, Lane AN, Higashi RM, Wang Y, Hamidi AB, Zhou R, Guitart X, Chen G, Manji HK, Kaddurah-Daouk R (2010) Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions. Metabolomics 6:165–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favre P, Pauling M, Stout J, Hozer F, Sarrazin S, Abé C, Alda M, Alloza C, Alonso-Lana S, Andreassen OA, Baune BT, Benedetti F, Busatto GF, Canales-Rodríguez EJ, Caseras X, Chaim-Avancini TM, Ching CRK, Dannlowski U, Deppe M, Eyler LT, Fatjo-Vilas M, Foley SF, Grotegerd D, Hajek T, Haukvik UK, Howells FM, Jahanshad N, Kugel H, Lagerberg TV, Lawrie SM, Linke JO, McIntosh A, Melloni EMT, Mitchell PB, Polosan M, Pomarol-Clotet E, Repple J, Roberts G, Roos A, Rosa PGP, Salvador R, Sarró S, Schofield PR, Serpa MH, Sim K, Stein DJ, Sussmann JE, Temmingh HS, Thompson PM, Verdolini N, Vieta E, Wessa M, Whalley HC, Zanetti MV, Leboyer M, Mangin J-F, Henry C, Duchesnay E, Houenou J, for the, E. B. D. W. G (2019) Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses across 3033 individuals. Neuropsychopharmacology 44:2285–2293

    Google Scholar 

  • Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, MacLean AW, St CD, Robinson M, Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, Owen MJ, Purcell SM, Sklar P, Craddock N (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    Google Scholar 

  • Fiorentino A, Sharp SI, McQuillin A (2015) Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur J Hum Genet 23:1200–1206

    Google Scholar 

  • Freland L, Beaulieu J-M (2012) Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci 5:14–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Geoffroy PA, Etain B, Sportiche S, Bellivier F (2014) Circadian biomarkers in patients with bipolar disorder: promising putative predictors of lithium response. Int J Bipolar Disorders 2:5

    Article  Google Scholar 

  • Geoffroy PA, Etain B, Lajnef M, Zerdazi EH, Brichant-Petitjean C, Heilbronner U, Hou L, Degenhardt F, Rietschel M, McMahon FJ, Schulze TG, Jamain S, Marie-Claire C, Bellivier F (2016) Circadian genes and lithium response in bipolar disorders: associations with PPARGC1A (PGC-1α) and RORA. Genes Brain Behav 15:660–668

    Google Scholar 

  • Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304

    Article  PubMed  PubMed Central  Google Scholar 

  • Gigase FAJ, Snijders G, Boks MP, De Witte LD (2019) Neurons and glial cells in bipolar disorder: a systematic review of postmortem brain studies of cell number and size. Neurosci Biobehav Rev 103:150–162

    Article  PubMed  Google Scholar 

  • Giridharan VV, Sayana P, Pinjari OF, Ahmad N, Da Rosa MI, Quevedo J, Barichello T (2020) Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry 25:94–113

    Article  PubMed  Google Scholar 

  • Gordovez FJA, McMahon FJ (2020) The genetics of bipolar disorder. Mol Psychiatry 25:544–559

    Google Scholar 

  • Gos T, Schroeter ML, Lessel W, Bernstein HG, Dobrowolny H, Schiltz K, Bogerts B, Steiner J (2013) S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: a postmortem study. J Psychiatr Res 47:1694–1699

    Article  PubMed  Google Scholar 

  • Gould TD, Chen G, Manji HK (2004) In vivo evidence in the brain for Lithium inhibition of glycogen synthase Kinase-3. Neuropsychopharmacology 29:32–38

    Article  CAS  PubMed  Google Scholar 

  • Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55:563–569

    Article  PubMed  Google Scholar 

  • Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    Article  PubMed  Google Scholar 

  • Harrison PJ, Colbourne L, Harrison CH (2020) The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry 25:1787–1808

    Article  PubMed  Google Scholar 

  • Hercher C, Chopra V, Beasley CL (2014) Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci 39:376–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2006) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/Glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  PubMed  Google Scholar 

  • Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, Versace A, Bilderbeck AC, Uhlmann A, Mwangi B, Krämer B, Overs B, Hartberg CB, Abé C, Dima D, Grotegerd D, Sprooten E, Bøen E, Jimenez E, Howells FM, Delvecchio G, Temmingh H, Starke J, Almeida JRC, Goikolea JM, Houenou J, Beard LM, Rauer L, Abramovic L, Bonnin M, Ponteduro MF, Keil M, Rive MM, Yao N, Yalin N, Najt P, Rosa PG, Redlich R, Trost S, Hagenaars S, Fears SC, Alonso-Lana S, Van Erp TGM, Nickson T, Chaim-Avancini TM, Meier TB, Elvsåshagen T, Haukvik UK, Lee WH, Schene AH, Lloyd AJ, Young AH, Nugent A, Dale AM, Pfennig A, McIntosh AM, Lafer B, Baune BT, Ekman CJ, Zarate CA, Bearden CE, Henry C, Simhandl C, McDonald C, Bourne C, Stein DJ, Wolf DH, Cannon DM, Glahn DC, Veltman DJ, Pomarol-Clotet E, Vieta E, Canales-Rodriguez EJ, Nery FG, Duran FLS, Busatto GF, Roberts G, Pearlson GD, Goodwin GM, Kugel H, Whalley HC, Ruhe HG, Soares JC, Fullerton JM, Rybakowski JK, Savitz J, Chaim KT, Fatjó-Vilas M, Soeiro-De-Souza MG, Boks MP, Zanetti MV, Otaduy MCG, Schaufelberger MS, Alda M, Ingvar M, Phillips ML, Kempton MJ, Bauer M, Landén M, Lawrence NS et al (2018) Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 23:932–942

    Google Scholar 

  • Hosokawa T, Momose T, Kasai K (2009) Brain glucose metabolism difference between bipolar and unipolar mood disorders in depressed and euthymic states. Prog Neuro-Psychopharmacol Biol Psychiatry 33:243–250

    Article  CAS  Google Scholar 

  • Hughes T, Sønderby IE, Polushina T, Hansson L, Holmgren A, Athanasiu L, Melbø-Jørgensen C, Hassani S, Hoeffding LK, Herms S, Bergen SE, Karlsson R, Song J, Rietschel M, Nöthen MM, Forstner AJ, Hoffmann P, Hultman CM, Landén M, Cichon S, Werge T, Andreassen OA, Le Hellard S, Djurovic S (2018) Elevated expression of a minor isoform of ANK3 is a risk factor for bipolar disorder. Transl Psychiatry 8:210

    Article  PubMed  PubMed Central  Google Scholar 

  • Iitaka C, Miyazaki K, Akaike T, Ishida N (2005) A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem 280:29397–29402

    Article  CAS  PubMed  Google Scholar 

  • Illes P, Verkhratsky A, Tang Y (2020) Pathological ATPergic signaling in major depression and bipolar disorder. Front Mol Neurosci 12:331

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagannath A, Peirson SN, Foster RG (2013) Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol 23:888–894

    Article  CAS  PubMed  Google Scholar 

  • Jia S, Li B, Huang J, Verkhratsky A, Peng L (2018) Regulation of glycogen content in astrocytes via Cav-1/PTEN/AKT/GSK-3β pathway by three anti-bipolar drugs. Neurochem Res 43:1692–1701

    Article  CAS  PubMed  Google Scholar 

  • Johnson J Jr, Pajarillo E, Karki P, Kim J, Son DS, Aschner M, Lee E (2018) Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. Neurotoxicology 67:112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jope R (2011) Glycogen synthase Kinase-3 in the etiology and treatment of mood disorders. Front Mol Neurosci 4:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung E-M, Ka M, Kim W-Y (2016) Loss of GSK-3 causes abnormal astrogenesis and behavior in mice. Mol Neurobiol 53:3954–3966

    Article  CAS  PubMed  Google Scholar 

  • Kato T (2019) Current understanding of bipolar disorder: toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 73:526–540

    Article  PubMed  Google Scholar 

  • Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Sassi RB, Axelson D, Nicoletti M, Brambilla P, Monkul ES, Hatch JP, Keshavan MS, Ryan N, Birmaher B, Soares JC (2005) Cingulate cortex anatomical abnormalities in children and adolescents with bipolar disorder. Am J Psychiatr 162:1637–1643

    Article  PubMed  Google Scholar 

  • Keshavarz M (2017) Glial cells as key elements in the pathophysiology and treatment of bipolar disorder. Acta Neuropsychiatr 29:140–152

    Article  PubMed  Google Scholar 

  • Kohno T, Shiga T, Toyomaki A, Kusumi I, Matsuyama T, Inoue T, Katoh C, Koyama T, Tamaki N (2007) Effects of lithium on brain glucose metabolism in healthy men. J Clin Psychopharmacol 27:698

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D-K, Lee H, Park K, Joh E, Kim C-E, Ryu S (2020) Common gray and white matter abnormalities in schizophrenia and bipolar disorder. PLoS One 15:e0232826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M-D, Ruan H-B, Hughes ME, Lee J-S, Singh JP, Jones SP, Nitabach MN, Yang X (2013) O-GlcNAc signaling entrains the circadian Clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CT, Yang KC, Lin WC (2018) Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front Psych 9:767

    Article  Google Scholar 

  • Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249

    Article  CAS  PubMed  Google Scholar 

  • Mahon K, Burdick KE, Szeszko PR (2010) A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci Biobehav Rev 34:533–554

    Article  PubMed  Google Scholar 

  • Malchow B, Strocka S, Frank F, Bernstein H-G, Steiner J, Schneider-Axmann T, Hasan A, Reich-Erkelenz D, Schmitz C, Bogerts B, Falkai P, Schmitt A (2015) Stereological investigation of the posterior hippocampus in affective disorders. J Neural Transm 122:1019–1033

    Article  CAS  PubMed  Google Scholar 

  • McClung CA (2007) Clock genes and bipolar disorder: implications for therapy. Pharmacogenomics 8:1097–1100

    Google Scholar 

  • McCullumsmith RE, Meador-Woodruff JH (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26:368–375

    Google Scholar 

  • McIntyre RS, Berk M, Brietzke E, Goldstein BI, López-Jaramillo C, Kessing LV, Malhi GS, Nierenberg AA, Rosenblat JD, Majeed A, Vieta E, Vinberg M, Young AH, Mansur RB (2020) Bipolar disorders. Lancet 396:1841–1856

    Google Scholar 

  • McKee CA, Lananna BV, Musiek ES (2020) Circadian regulation of astrocyte function: implications for Alzheimer's disease. Cell Mol Life Sci 77:1049–1058

    Google Scholar 

  • McKenzie IA, Ohayon D, Li H, De Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346:318–322

    Google Scholar 

  • Medina A, Burke S, Thompson RC, Bunney W Jr, Myers RM, Schatzberg A, Akil H, Watson SJ (2013) Glutamate transporters: a key piece in the glutamate puzzle of major depressive disorder. J Psychiatr Res 47:1150–1156

    Article  PubMed  Google Scholar 

  • Moon AL, Haan N, Wilkinson LS, Thomas KL, Hall J (2018) CACNA1C: association with psychiatric disorders, behavior, and neurogenesis. Schizophr Bull 44:958–965

    Article  PubMed  PubMed Central  Google Scholar 

  • Mühleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J, Mattheisen M, Forstner AJ, Schumacher J, Breuer R, Meier S, Herms S, Hoffmann P, Lacour A, Witt SH, Reif A, Müller-Myhsok B, Lucae S, Maier W, Schwarz M, Vedder H, Kammerer-Ciernioch J, Pfennig A, Bauer M, Hautzinger M, Moebus S, Priebe L, Czerski PM, Hauser J, Lissowska J, Szeszenia-Dabrowska N, Brennan P, McKay JD, Wright A, Mitchell PB, Fullerton JM, Schofield PR, Montgomery GW, Medland SE, Gordon SD, Martin NG, Krasnow V, Chuchalin A, Babadjanova G, Pantelejeva G, Abramova LI, Tiganov AS, Polonikov A, Khusnutdinova E, Alda M, Grof P, Rouleau GA, Turecki G, Laprise C, Rivas F, Mayoral F, Kogevinas M, Grigoroiu-Serbanescu M, Propping P, Becker T, Rietschel M, Nöthen MM, Cichon S (2014) Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun 5:3339

    Google Scholar 

  • Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG (2018) Peroxisome proliferator-activated receptor gamma Coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biol Psychiatry 83:761

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Li T, Yi C, Huang N, Koulakoff A, Weng C, Li C, Zhao CJ, Giaume C, Xiao L (2016) Connexin-based channels contribute to metabolic pathways in the oligodendroglial lineage. J Cell Sci 129:1902–1914

    CAS  PubMed  Google Scholar 

  • Nurnberger JI Jr, Koller DL, Jung J, Edenberg HJ, Foroud T, Guella I, Vawter MP, Kelsoe JR, For The Psychiatric Genomics Consortium Bipolar, G (2014) Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiat 71:657–664

    Article  CAS  Google Scholar 

  • Öngür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci 95:13290

    Article  PubMed  PubMed Central  Google Scholar 

  • Ongür D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF (2008) Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry 64:718–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz FC, Habermacher C, Graciarena M, Houry PY, Nishiyama A, Oumesmar BN, Angulo MC (2019) Neuronal activity in vivo enhances functional myelin repair. JCI Insight 5:e123434

    Article  Google Scholar 

  • Pantazopoulos H, Woo T-UW, Lim MP, Lange N, Berretta S (2010) Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67:155–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Papiol S, Schulze TG, Alda M (2018) Genetics of lithium response in bipolar disorder. Pharmacopsychiatry 51:206–211

    Article  CAS  PubMed  Google Scholar 

  • Park LT, Lener MS, Hopkins M, Iadorola N, Machado-Vieira R, Ballard E, Nugent A, Zarate CA Jr (2017) A double-blind, placebo-controlled, pilot study of Riluzole monotherapy for acute bipolar depression. J Clin Psychopharmacol 37:355–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passos IC, Mwangi B, Vieta E, Berk M, Kapczinski F (2016) Areas of controversy in neuroprogression in bipolar disorder. Acta Psychiatr Scand 134:91–103

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Li B, Verkhratsky A (2016) Targeting astrocytes in bipolar disorder. Expert Rev Neurother 16:649–657

    Article  CAS  PubMed  Google Scholar 

  • Picard F, Auwerx J (2002) PPAR(gamma) and glucose homeostasis. Annu Rev Nutr 22:167–197

    Article  CAS  PubMed  Google Scholar 

  • Pirttimaki TM, Parri HR (2013) Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist 19:604–615

    Article  PubMed  Google Scholar 

  • Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766–777

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Halaris A, Selemon LD (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 49:741–752

    Article  CAS  PubMed  Google Scholar 

  • Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS, Gertz J, Cartagena PM, Walsh DM, Vawter MP, Jones EG, Schatzberg AF, Barchas JD, Watson SJ, Bunney BG, Akil H, Bunney WE, Li JZ, Cooper SJ, Myers RM (2017) Post-mortem molecular profiling of three psychiatric disorders. Genome Med 9:72–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  • Rivera AD, Butt AM (2019) Astrocytes are direct cellular targets of lithium treatment: novel roles for lysyl oxidase and peroxisome-proliferator activated receptor-γ as astroglial targets of lithium. Transl Psychiatry 9:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera A, Vanzuli I, Arellano JJ, Butt A (2016) Decreased regenerative capacity of oligodendrocyte progenitor cells (NG2-Glia) in the ageing brain: a vicious cycle of synaptic dysfunction, myelin loss and neuronal disruption? Curr Alzheimer Res 13:413–418

    Article  CAS  PubMed  Google Scholar 

  • Rivera AD, Chacon-De-La-Rocha I, Pieropan F, Papanikolau M, Azim K, Butt AM (2021a) Keeping the ageing brain wired: a role for purine signalling in regulating cellular metabolism in oligodendrocyte progenitors. Pflugers Arch - Eur J Physiol 473:775

    Article  CAS  Google Scholar 

  • Rivera AD, Pieropan F, Chacon-De-La-Rocha I, Lecca D, Abbracchio MP, Azim K, Butt AM (2021b) Functional genomic analyses highlight a shift in Gpr17-regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum. Aging Cell n/a:e13335

    Google Scholar 

  • Rodríguez JJ, Yeh C-Y, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A (2014) Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 35:15–23

    Article  PubMed  Google Scholar 

  • Saab AS, Nave KA (2017) Myelin dynamics: protecting and shaping neuronal functions. Curr Opin Neurobiol 47:104–112

    Article  CAS  PubMed  Google Scholar 

  • Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D, Biname F, Perera SS, Endres K, Lutz B, Radyushkin K, Trotter J, Mittmann T (2014) Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 12:e1001993

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakurai H, Dording C, Yeung A, Foster S, Jain F, Chang T, Trinh N-H, Bernard R, Boyden S, Iqbal SZ, Wilkinson ST, Mathew SJ, Mischoulon D, Fava M, Cusin C (2019) Longer-term open-label study of adjunctive riluzole in treatment-resistant depression. J Affect Disord 258:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampedro-Piquero P, De Bartolo P, Petrosini L, Zancada-Menendez C, Arias JL, Begega A (2014) Astrocytic plasticity as a possible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiol Learn Mem 114:16–25

    Article  CAS  PubMed  Google Scholar 

  • Schür RR, Draisma LW, Wijnen JP, Boks MP, Koevoets MG, Joëls M, Klomp DW, Kahn RS, Vinkers CH (2016) Brain GABA levels across psychiatric disorders: a systematic literature review and meta-analysis of (1) H-MRS studies. Hum Brain Mapp 37:3337–3352

    Article  PubMed  PubMed Central  Google Scholar 

  • Scotti-Muzzi E, Umla-Runge K, Soeiro-De-Souza MG (2021) Anterior cingulate cortex neurometabolites in bipolar disorder are influenced by mood state and medication: a meta-analysis of (1)H-MRS studies. Eur Neuropsychopharmacol 47:62

    Article  CAS  PubMed  Google Scholar 

  • Serafini G, Pardini M, Monacelli F, Orso B, Girtler N, Brugnolo A, Amore M, Nobili F, Team on Dementia of the IRCCS Ospedale Policlinico San Martino, D. M (2021) Neuroprogression as an illness trajectory in bipolar disorder: a selective review of the current literature. Brain Sci 11:276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao L, Vawter MP (2008) Shared gene expression alterations in schizophrenia and bipolar disorder. Biol Psychiatry 64:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, De Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, Vanbeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13:558–569

    Google Scholar 

  • Steardo L Jr, De Filippis R, Carbone EA, Segura-Garcia C, Verkhratsky A, De Fazio P (2019) Sleep disturbance in bipolar disorder: neuroglia and circadian rhythms. Front Psych 10:501

    Article  Google Scholar 

  • Stenovec M, Li B, Verkhratsky A, Zorec R (2020) Astrocytes in rapid ketamine antidepressant action. Neuropharmacology 173:108158

    Article  CAS  PubMed  Google Scholar 

  • Stringer TP, Guerrieri D, Vivar C, Van Praag H (2015) Plant-derived flavanol (−)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice. Transl Psychiatry 5:e493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szulc A, Wiedlocha M, Waszkiewicz N, Galińska-Skok B, Marcinowicz P, Gierus J, Mosiolek A (2018) Proton magnetic resonance spectroscopy changes after lithium treatment. Systematic review. Psychiatry Res Neuroimaging 273:1–8

    Article  PubMed  Google Scholar 

  • Takeda K, Watanabe T, Oyabu K, Tsukamoto S, Oba Y, Nakano T, Kubota K, Katsurabayashi S, Iwasaki K (2021) Valproic acid-exposed astrocytes impair inhibitory synapse formation and function. Sci Rep 11:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todtenkopf MS, Vincent SL, Benes FM (2005) A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 73:79–89

    Article  PubMed  Google Scholar 

  • Toker L, Mancarci BO, Tripathy S, Pavlidis P (2018) Transcriptomic evidence for alterations in astrocytes and Parvalbumin interneurons in subjects with bipolar disorder and Schizophrenia. Biol Psychiatry 84:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toro CT, Hallak JE, Dunham JS, Deakin JF (2006) Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci Lett 404:276–281

    Article  CAS  PubMed  Google Scholar 

  • Trevisiol A, Saab AS, Winkler U, Marx G, Imamura H, Mobius W, Kusch K, Nave KA, Hirrlinger J (2017) Monitoring ATP dynamics in electrically active white matter tracts. elife 6:e24241

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadnie CA, McClung CA (2017) Circadian rhythm disturbances in mood disorders: insights into the role of the suprachiasmatic nucleus. Neural Plast 2017:1504507

    Google Scholar 

  • Veldic M, Millischer V, Port JD, Ho AM-C, Jia Y-F, Geske JR, Biernacka JM, Backlund L, McElroy SL, Bond DJ, Villaescusa JC, Skime M, Choi D-S, Lavebratt C, Schalling M, Frye MA (2019) Genetic variant in SLC1A2 is associated with elevated anterior cingulate cortex glutamate and lifetime history of rapid cycling. Transl Psychiatry 9:149

    Google Scholar 

  • Verkhratsky A, Bush NA, Nedergaard M, Butt A (2018) The special case of human astrocytes. Neuroglia 1:21

    Article  Google Scholar 

  • Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walterfang M, Wood AG, Barton S, Velakoulis D, Chen J, Reutens DC, Kempton MJ, Haldane M, Pantelis C, Frangou S (2009) Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog Neuro-Psychopharmacol Biol Psychiatry 33:1050–1057

    Article  Google Scholar 

  • Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, Pan Y, Gowda GA, Raftery D, Arrieta-Cruz I, Sharma V, Cooper B, Lobo J, Simon JE, Zhang C, Cheng A, Qian X, Ono K, Teplow DB, Pavlides C, Dixon RA, Pasinetti GM (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment. J Neurosci 32:5144–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu P, Zhang A, Yang C, Liu S, Wang J, Xu Y, Sun N (2020) Specific gray matter volume changes of the brain in unipolar and bipolar depression. Front Hum Neurosci 14:592419

    Article  CAS  PubMed  Google Scholar 

  • Webster MJ, Knable MB, Johnston-Wilson N, Nagata K, Inagaki M, Yolken RH (2001) Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immun 15:388–400

    Article  CAS  PubMed  Google Scholar 

  • Webster MJ, O'Grady J, Kleinman JE, Weickert CS (2005) Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 133:453–461

    Google Scholar 

  • Wilkowska A, Szałach Ł, Cubała WJ (2020) Ketamine in Bipolar Disorder: A Review. Neuropsychiatr Dis Treat 16:2707–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, Emery B, Li H, Richardson WD (2016) Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 19:1210–1217

    Google Scholar 

  • Zhang X, Alnafisah RS, Hamoud A-RA, Shukla R, Wen Z, McCullumsmith RE, O’Donovan SM (2021) Role of astrocytes in major neuropsychiatric disorders. Neurochem Res doi: 10.1007/s11064-020-03212-x. Online ahead of print

    Google Scholar 

Download references

Acknowledgements

We would like to thank the support of the BBSRC and MRC (AB), and the MSCA Seal of Excellence @ UNIPD (AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur M. Butt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butt, A.M., Rivera, A.D. (2021). Astrocytes in Bipolar Disorder. In: Li, B., Parpura, V., Verkhratsky, A., Scuderi, C. (eds) Astrocytes in Psychiatric Disorders. Advances in Neurobiology, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-77375-5_5

Download citation

Publish with us

Policies and ethics