Skip to main content

Visible Range Activated Metal Oxide Photocatalysts in New and Emerging Energy Applications

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Metal oxide semiconductors are known to provide adequate activity in most of the photocatalytic processes. Among them, visible active or activated ones gain the highest attention because of their wide range of application areas induced by light absorption and followed by charge transport. In this chapter, the focus of potential application areas is limited to solar fuels and solar cells as they represent two of the most studied fields of green photocatalytic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico ME et al (2013) Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys Chem Chem Phys 15(7):2572–2579. https://doi.org/10.1039/C2CP44397J

    Article  CAS  PubMed  Google Scholar 

  2. Akman E (2020) Enhanced photovoltaic performance and stability of dye-sensitized solar cells by utilizing manganese-doped ZnO photoanode with europium compact layer. J Mol Liq 317:114223. https://doi.org/10.1016/j.molliq.2020.114223

    Article  CAS  Google Scholar 

  3. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40(4):3000–3009. https://doi.org/10.1039/C5NJ03478G

    Article  CAS  Google Scholar 

  4. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114(19):9824–9852. https://doi.org/10.1021/cr5000738

    Article  CAS  PubMed  Google Scholar 

  5. Bai S, Li H, Guan Y, Jiang S (2011) The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Appl Surf Sci 257(15):6406–6409. https://doi.org/10.1016/j.apsusc.2011.02.007

    Article  CAS  Google Scholar 

  6. Bailie CD, Unger EL, Zakeeruddin SM, Grätzel M, McGehee MD (2014) Melt-infiltration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar cells. Phys Chem Chem Phys 16(10):4864–4870. https://doi.org/10.1039/C4CP00116H

    Article  CAS  PubMed  Google Scholar 

  7. Banik A, Ansari MS, Qureshi M (2018) Efficient energy harvesting in SnO2-based dye-sensitized solar cells utilizing nano-amassed mesoporous zinc oxide hollow microspheres as synergy boosters. ACS Omega 3(10):14482–14493. https://doi.org/10.1021/acsomega.8b02520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Basavarajappa PS, Patil SB, Ganganagappa N, Raghava K, Raghu AV, Venkata C (2019) Sciencedirect recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, 5. https://doi.org/10.1016/j.ijhydene.2019.07.241

  9. Benesperi I, Michaels H, Freitag M (2018) The researcher’s guide to solid-state dye-sensitized solar cells. J Mater Chem C 6(44):11903–11942. https://doi.org/10.1039/C8TC03542C

    Article  CAS  Google Scholar 

  10. Bilal M, Muhammad T, Muhammad S, Muhammad R, Najeeb S, Rehman U, Muhammad S (2020) Visible light responsive photocatalytic hydrogen evolution using MoS2 incorporated ZnO. Appl Nanosci 10(10):3925–3931. https://doi.org/10.1007/s13204-020-01476-x

    Article  CAS  Google Scholar 

  11. Cao Y, Saygili Y, Ummadisingu A, Teuscher J, Luo J, Pellet N et al (2017) 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nat Commun 8(1):15390. https://doi.org/10.1038/ncomms15390

  12. Cao Z, Li C, Deng X, Wang S, Yuan Y, Chen Y et al (2020) Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO2 and SnO2. J Mater Chem A 8(38):19768–19787. https://doi.org/10.1039/D0TA07282F

  13. Chandra M, Bhunia K, Pradhan D (2018) Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorg Chem 57(8):4524–4533. https://doi.org/10.1021/acs.inorgchem.8b00283

    Article  CAS  PubMed  Google Scholar 

  14. Cheng X, Yu X, Xing Z, Yang L (2016) Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arab J Chem 9:S1706–S1711. https://doi.org/10.1016/j.arabjc.2012.04.052

    Article  CAS  Google Scholar 

  15. Cherni D, Ayedi S, Jaouali I, Moussa N, Nsib MF (2020) Preparation of solar/visible-light active TiO2 photocatalysts with carboxylic acids for the degradation of phenol. React Kinet Mech Catal 129(2):1091–1102. https://doi.org/10.1007/s11144-020-01756-1

    Article  CAS  Google Scholar 

  16. Choi W, Termin A, Hoffmann MR (1994) The Role of Metal Ion Dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679. https://doi.org/10.1021/j100102a038

    Article  Google Scholar 

  17. Cots A, Bonete P (2018) Improving the stability and efficiency of CuO photocathodes for solar hydrogen production through modification with iron ́. ACS Appl Mater Interfaces 10:26348–26356. https://doi.org/10.1021/acsami.8b09892

    Article  CAS  PubMed  Google Scholar 

  18. Diker H, Varlikli C, Mizrak K, Dana A (2011) Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources. Energy 36(2):1243–1254. https://doi.org/10.1016/j.energy.2010.11.020

    Article  CAS  Google Scholar 

  19. Diker H, Varlikli C, Stathatos E (2014) N-doped titania powders prepared by different nitrogen sources and their application in quasi-solid state dye-sensitized solar cells. Int J Energy Res 908–917. https://doi.org/10.1002/er.3091s

  20. Diwald O, Thompson TL, Zubkov T, Walck SD, Yates JT (2004) Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. J Phys Chem B 108(19):6004–6008. https://doi.org/10.1021/jp031267y

    Article  CAS  Google Scholar 

  21. Djurišić AB, He Y, Ng AMC (2020) Visible-light photocatalysts: prospects and challenges. APL Mater 8(3). https://doi.org/10.1063/1.5140497

  22. Du J, Wang H, Yang M, Zhang F, Wu H, Cheng X et al (2018) ScienceDirect highly efficient hydrogen evolution catalysis based on MoS2/CdS/TiO2 porous composites 3:3–11. https://doi.org/10.1016/j.ijhydene.2018.03.208

  23. Dunnill CW, Parkin IP (2011) Nitrogen-doped TiO2 thin films: photocatalytic applications for healthcare environments. Dalton Trans 40(8):1635–1640. https://doi.org/10.1039/C0DT00494D

    Article  CAS  PubMed  Google Scholar 

  24. Emeline AV, Kuznetsov VN, Rybchuk VK, Serpone N (2008) Visible-light-active titania photocatalysts: the case of N-doped <svg style=“vertical-align:-4.32007pt;width:42.637501px;” id=“M1” height=“20.637501” version=“1.1” viewBox=“0 0 42.637501 20.637501” width=“42.637501” xmlns:xlink=“http://www.w3.org/1999/xli. Int J Photoenergy, 2008:258394. https://doi.org/10.1155/2008/258394

  25. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C 25:1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003

    Article  CAS  Google Scholar 

  26. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14. https://doi.org/10.1016/j.mssp.2015.07.052

    Article  CAS  Google Scholar 

  27. Favet T, Cottineau T, Keller V, El Khakani MA (2020) Comparative study of the photocatalytic effects of pulsed laser deposited CoO and NiO nanoparticles onto TiO2 nanotubes for the photoelectrochemical water splitting. Solar Energy Mater Solar Cells 217. https://doi.org/10.1016/j.solmat.2020.110703

  28. Fishman ZS, Rudshteyn B, He Y, Liu B, Chaudhuri S, Askerka M et al (2016) Fundamental role of oxygen stoichiometry in controlling the band gap and reactivity of cupric oxide nanosheets. J Am Chem Soc 138(34):10978–10985. https://doi.org/10.1021/jacs.6b05332

    Article  CAS  PubMed  Google Scholar 

  29. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  30. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1(1):1–21. https://doi.org/10.1016/S1389-5567(00)00002-2

  31. Gai L, Duan X, Jiang H, Mei Q, Zhou G, Tian Y, Liu H (2012) One-pot synthesis of nitrogen-doped TiO2 nanorods with anatase/brookite structures and enhanced photocatalytic activity. CrystEngComm 14(22):7662–7671. https://doi.org/10.1039/C2CE25563D

    Article  CAS  Google Scholar 

  32. Gao N, Wan T, Xu Z, Ma L, Ramakrishna S, Liu Y (2020) Nitrogen doped TiO2/Graphene nanofibers as DSSCs photoanode. Mater Chem Phys 255:123542. https://doi.org/10.1016/j.matchemphys.2020.123542

  33. Ge Z, Wang C, Chen Z, Wang T, Chen T, Shi R et al (2021) Investigation of the TiO2 nanoparticles aggregation with high light harvesting for high-efficiency dye-sensitized solar cells. Mater Res Bull 135:111148. https://doi.org/10.1016/j.materresbull.2020.111148

  34. Gershon T (2011) Metal oxide applications in organic-based photovoltaics. Mater Sci Technol 27(9):1357–1371. https://doi.org/10.1179/026708311X13081465539809

    Article  CAS  Google Scholar 

  35. González-Verjan VA, Trujillo-Navarrete B, Félix-Navarro RM, de León JND, Romo-Herrera JM, Calva-Yáñez JC et al (2020) Effect of TiO2 particle and pore size on DSSC efficiency. Mater Renew Sustain Energy 9(2):13. https://doi.org/10.1007/s40243-020-00173-7

  36. Guo H, Chen M, Zhong Q, Wang Y, Ma W, Ding J (2019) Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH. J CO2 Util 33:233–241. https://doi.org/10.1016/j.jcou.2019.05.016

  37. Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L et al (2018). MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ Sci 11(1):106–114. https://doi.org/10.1039/C7EE02464A

  38. Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O’Shea K, Dionysiou DD (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B Environ 107(1):77–87. https://doi.org/10.1016/j.apcatb.2011.06.039

  39. Hannappel T, Burfeindt B, Storck W, Willig F (1997) Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-Dye molecules into empty electronic states in a colloidal anatase TiO2 film. J Phys Chem B 101(35):6799–6802. https://doi.org/10.1021/jp971581q

    Article  CAS  Google Scholar 

  40. Hashmi SG, Martineau D, Li X, Ozkan M, Tiihonen A, Dar MI et al (2017) Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility. Adv Mater Technol 2(1):1600183. https://doi.org/10.1002/admt.201600183

  41. He R, Hocking RK, Tsuzuki T (2012) Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Mater Chem Phys 132(2):1035–1040. https://doi.org/10.1016/j.matchemphys.2011.12.061

    Article  CAS  Google Scholar 

  42. He Y, Ng AMC (2020) Visible-light photocatalysts: prospects and challenges. APL Mater 8:030903. https://doi.org/10.1063/1.5140497

  43. Hou X, Aitola K, Lund PD (2020). TiO2 nanotubes for dye-sensitized solar cells—a review. Energy Sci Eng 00:1–17. https://doi.org/10.1002/ese3.831

  44. Hu D, Liu X, Deng S, Liu Y, Feng Z, Han B et al (2014) Structural and optical properties of Mn-doped ZnO nanocrystalline thin films with the different dopant concentrations. Physica E Low-Dimens Syst Nanostruct 61:14–22. https://doi.org/10.1016/j.physe.2014.03.007

  45. Huan TN, Rousse G, Zanna S, Lucas IT, Xu X, Menguy N et al (2017) A dendritic nanostructured copper oxide electrocatalyst for the oxygen evolution reaction. Angew Chemie Int Edn 56(17):4792–4796. https://doi.org/10.1002/anie.201700388

  46. Huerta AM, Luévano FE, Leticia H, Martínez MT, Sánchez AT (2019) Photocatalytic—H2 production and—CO2 reduction on Cu, Ni—doped ZnO: effect of metal doping and oxygen vacancies. J Mater Sci Mater Electron 30(20):18506–18518. https://doi.org/10.1007/s10854-019-02204-0

    Article  CAS  Google Scholar 

  47. Ibrayev N, Serikov T, Zavgorodniy A, Sadykova A (2018) The effect of the DSSC photoanode area based on TiO2/Ag on the conversion efficiency of solar energy into electrical energy. IOP Conference Series: Materials Science and Engineering 289(1).https://doi.org/10.1088/1757-899X/289/1/012024

  48. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698):637–638. https://doi.org/10.1038/277637a0

    Article  CAS  Google Scholar 

  49. Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide Sol−Gel method. J Phys Chem C 112(37):14595–14602. https://doi.org/10.1021/jp803567f

    Article  CAS  Google Scholar 

  50. Jang YJ, Thogiti S, Lee K, Kim JH (2019) Hole-Transporting Material. Curr Comput-Aided Drug Des 9:452

    CAS  Google Scholar 

  51. Jiang H, Li T, Han X, Guo X, Jia B, Liu K, Cao H, Lin Y, Zhang M, Li Y, Zhan X (2020) Passivated metal oxide n-Type contacts for efficient and stable organic solar cells. ACS Appl Energy Mater 3(1):1111–1118. https://doi.org/10.1021/acsaem.9b02158

    Article  CAS  Google Scholar 

  52. Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK (2018) A hierarchical Z‑scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater 30(10):1706108. https://doi.org/10.1002/adma.201706108

  53. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897. https://doi.org/10.1039/C5CC06759F

    Article  CAS  Google Scholar 

  54. Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19(12):19995–20022. https://doi.org/10.3390/molecules191219995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karthik P, Kumar TRN, Neppolian B (2020) ScienceDirect redox couple mediated charge carrier separation in g-C3N4/CuO photocatalyst for enhanced photocatalytic H2 production, 45:7541–7551. https://doi.org/10.1016/j.ijhydene.2019.06.045

  56. Khan J, Gu J, Meng Y, Chai Z, He S, Wu Q et al (2017) Anatase TiO2 single crystal hollow nanoparticles: their facile synthesis and high-performance in dye-sensitized solar cells. CrystEngComm 19(2):325–334. https://doi.org/10.1039/C6CE02062C

  57. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19(5):462–464. https://doi.org/10.1016/j.jscs.2015.04.003

  58. Kishore Kumar D, Kříž J, Bennett N, Chen B, Upadhayaya H, Reddy KR, Sadhu V (2020) Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): a review. Mater Sci Energy Technol 3:472–481. https://doi.org/10.1016/j.mset.2020.03.003

    Article  CAS  Google Scholar 

  59. Kong X, Peng Z, Jiang R, Jia P, Feng J, Yang P et al (2020) Nanolayered heterostructures of N—doped TiO2 and N—doped carbon for hydrogen evolution. https://doi.org/10.1021/acsanm.9b02217

  60. Kothandaraman RK, Jiang Y, Feurer T, Tiwari AN, Fu F (2020) Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Methods 4(10):2000395. https://doi.org/10.1002/smtd.202000395

    Article  CAS  Google Scholar 

  61. Kumar TRN, Yuvaraj S, Kavitha P, Sudhakar V (2020) Aromatic amine passivated TiO2 for dye-sensitized solar cells (DSSC) with ~ 9. 8 % efficiency. Sol Energy 201:965–971. https://doi.org/10.1016/j.solener.2020.03.077

    Article  CAS  Google Scholar 

  62. Lee K, Suryanarayanan V, Ho K (2006) The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells $, vol 90, pp 2398–2404. https://doi.org/10.1016/j.solmat.2006.03.034

  63. Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N (2005) Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem Phys Lett 401(4):579–584.https://doi.org/10.1016/j.cplett.2004.11.126

  64. Li X, Wen J, Low J, Fang Y, Yu J (2014) Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, vol 57. https://doi.org/10.1007/s40843-014-0003-1

  65. Li Z, Chen L, Yang Q, Yang H, Zhou Y (2021) Applied Surface science compacted stainless steel mesh-supported Co3O4 porous nanobelts for HCHO catalytic oxidation and Co3O4 @ Co3S4 via in situ sulfurization as platinum-free counter electrode for flexible dye-sensitized solar cells. Appl Surf Sci 536:147815. https://doi.org/10.1016/j.apsusc.2020.147815

    Article  CAS  Google Scholar 

  66. Lima MK, Fernandes DM, Silva MF, Baesso ML, Neto AM, de Morais GR et al (2014) Co-doped ZnO nanoparticles synthesized by an adapted sol–gel method: effects on the structural, optical, photocatalytic and antibacterial properties. J Sol-Gel Sci Technol 72(2):301–309. https://doi.org/10.1007/s10971-014-3310-z

  67. Lin Z, Jiang C, Zhu C, Zhang J (2013) Development of inverted organic solar cells with TiO2 interface layer by using low-temperature atomic layer deposition. ACS Appl Mater Interfaces 5(3):713–718. https://doi.org/10.1021/am302252p

    Article  CAS  PubMed  Google Scholar 

  68. Lin Y-H, Weng C-H, Srivastav AL, Lin Y-T, Tzeng J-H (2015) Facile synthesis and characterization of N-Doped TiO2 photocatalyst and its visible-light activity for photo-oxidation of ethylene. J Nanomater 2015:807394. https://doi.org/10.1155/2015/807394

    Article  Google Scholar 

  69. Liu B, Li X, Liu M, Ning Z, Zhang Q, Li C et al (2012) Photovoltaic performance of solid-state DSSCs sensitized with organic isophorone dyes: effect of dye-loaded amount and dipole moment. Dyes Pigm 94(1):23–27. https://doi.org/10.1016/j.dyepig.2011.11.005

    Article  CAS  Google Scholar 

  70. Liu G, Yin L-C, Wang J, Niu P, Zhen C, Xie Y, Cheng H-M (2012) A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci 5(11):9603–9610. https://doi.org/10.1039/C2EE22930G

    Article  CAS  Google Scholar 

  71. Liu S-H, Lu J-S, Pu Y-C, Fan H-C (2019) Enhanced photoreduction of CO2 into methanol by facet-dependent Cu2O/reduce graphene oxide. J CO2 Util 33:171–178. https://doi.org/10.1016/j.jcou.2019.05.020

  72. Liu S-H, Syu H-R (2012) One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light. Appl Energy 100:148–154. https://doi.org/10.1016/j.apenergy.2012.03.063

    Article  CAS  Google Scholar 

  73. Low J, Dai B, Tong T, Jiang C, Yu J (2019) In Situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-Scheme TiO2/CdS composite film photocatalyst. Adv Mater 31(6):1802981. https://doi.org/10.1002/adma.201802981

    Article  CAS  Google Scholar 

  74. Lv Y, Tong H, Cai W, Zhang Z, Chen H, Zhou X (2021) Boosting the efficiency of commercial available carbon-based perovskite solar cells using Zinc-doped TiO2 nanorod arrays as electron transport layer. J Alloy Compd 851:156785. https://doi.org/10.1016/j.jallcom.2020.156785

    Article  CAS  Google Scholar 

  75. Lloyd MT, Lee Y-J, Davis RJ, Fang E, Fleming RM, Hsu JWP, Kline RJ, Toney MF (2009) Improved efficiency in Poly(3-hexylthiophene)/zinc oxide solar cells via lithium incorporation. J Phys Chem C 113(41):17608–17612. https://doi.org/10.1021/jp907758s

    Article  CAS  Google Scholar 

  76. Ma L, Hao F, Stoumpos CC, Phelan BT, Wasielewski MR, Kanatzidis MG (2016) Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J Am Chem Soc 138(44):14750–14755. https://doi.org/10.1021/jacs.6b09257

    Article  CAS  PubMed  Google Scholar 

  77. Mao N (2019) Investigating the heteronjunction between ZnO/Fe2O3 and g-C3N4 for an enhanced photocatalytic H2 production under visible-light irradiation. Sci Rep 9:12383. https://doi.org/10.1038/s41598-019-48730-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martha S, Sahoo PC, Parida KM (2015) RSC advances an overview on visible light responsive metal oxide based photocatalysts for hydrogen energy production. RSC Adv 5:61535–61553. https://doi.org/10.1039/C5RA11682A

    Article  CAS  Google Scholar 

  79. Martínez-Ferrero E, Sakatani Y, Boissière C, Grosso D, Fuertes A, Fraxedas J, Sanchez C (2007) Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts. Adv Func Mater 17(16):3348–3354. https://doi.org/10.1002/adfm.200700396

    Article  CAS  Google Scholar 

  80. Martini I, Hodak JH, Hartland GV (1998) Effect of water on the electron transfer dynamics of 9-Anthracenecarboxylic acid bound to TiO2 nanoparticles: demonstration of the marcus inverted region. J Phys Chem B 102(3):607–614. https://doi.org/10.1021/jp972925f

    Article  CAS  Google Scholar 

  81. Mateo D, Albero J, García H (2018) Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl Catal B 224:563–571. https://doi.org/10.1016/j.apcatb.2017.10.071

    Article  CAS  Google Scholar 

  82. Mehmood B, Khan MI, Iqbal M, Mahmood A, Al-Masry W (2020) Structural and optical properties of Ti and Cu co-doped ZnO thin films for photovoltaic applications of dye sensitized solar cells. Int J Energy Res 1–15. https://doi.org/10.1002/er.5939

  83. Mimouni R, Kamoun O, Yumak A, Mhamdi A, Boubaker K, Petkova P, Amlouk M (2015) Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO: Mn sprayed thin films compounds. J Alloy Compd 645:100–111. https://doi.org/10.1016/j.jallcom.2015.05.012

    Article  CAS  Google Scholar 

  84. Modanlu S, Shafiekhani A (2019) Synthesis of pure and C/S/N co-doped Titania on Al mesh and their photocatalytic usage in Benzene degradation. Sci Rep 9(1):16648. https://doi.org/10.1038/s41598-019-53189-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mohamad Noh MF, Teh CH, Daik R, Lim EL, Yap CC, Ibrahim MA et al (2018) The architecture of the electron transport layer for a perovskite solar cell. J Mater Chem C 6(4):682–712. https://doi.org/10.1039/C7TC04649A

    Article  CAS  Google Scholar 

  86. Mohapatra L, Parida K (2017) A review of solar and visible light active oxo-bridged materials for energy and environment. Catal Sci Technol 7(11):2153–2164. https://doi.org/10.1039/C7CY00116A

    Article  CAS  Google Scholar 

  87. Mousa MA, Khairy M, Mohamed HM (2018) Dye-sensitized solar cells based on an N-Doped TiO2 and TiO2-graphene composite electrode. J Electron Mater 47(10):6241–6250. https://doi.org/10.1007/s11664-018-6530-0

    Article  CAS  Google Scholar 

  88. Mu J, Chen B, Zhang M, Guo Z, Zhang P, Zhang Z et al (2012) Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures. ACS Appl Mater Interfaces 4(1):424–430. https://doi.org/10.1021/am201499r

    Article  CAS  PubMed  Google Scholar 

  89. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  90. Navlani-garcía M, Mori K, Kuwahara Y, Yamashita H (2018) Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts, pp 277–292. https://doi.org/10.1038/s41427-018-0025-6

  91. Nie J, Patrocinio AOT, Hamid S, Sieland F, Sann J, Xia S et al (2018) New insights into the plasmonic enhancement for photocatalytic H2 production by Cu–TiO2 upon visible light illumination. Phys Chem Chem Phys 20(7):5264–5273. https://doi.org/10.1039/C7CP07762A

    Article  CAS  PubMed  Google Scholar 

  92. Nishijima K, Kamai T, Murakami N, Tsubota T, Ohno T (2008) Photocatalytic hydrogen or oxygen evolution from water over S- or N-doped TiO2 under visible light. Int J Photoenergy 2008:173943. https://doi.org/10.1155/2008/173943

    Article  Google Scholar 

  93. NREL (2020) Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed Dec 2020

  94. Nolan M, Iwaszuk A, Lucid AK, Carey JJ, Fronzi M (2016) Design of novel visible light active photocatalyst materials: surface modified TiO2. Adv Mater 28(27):5425–5446. https://doi.org/10.1002/adma.201504894

    Article  CAS  PubMed  Google Scholar 

  95. Nolan NT, Synnott DW, Seery MK, Hinder SJ, Van Wassenhoven A, Pillai SC (2012) Effect of N-doping on the photocatalytic activity of sol–gel TiO2. J Hazard Mater 211–212:88–94. https://doi.org/10.1016/j.jhazmat.2011.08.074

  96. Olson DC, Shaheen SE, White MS, Mitchell WJ, van Hest MFAM, Collins RT, Ginley DS (2007) Band-offset engineering for enhanced open-circuit voltage in polymer–oxide hybrid solar cells. Adv Funct Mater 17(2):264–269. https://doi.org/10.1002/adfm.200600215

  97. Pan Y-X, You Y, Xin S, Li Y, Fu G, Cui Z et al (2017) Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J Am Chem Soc 139(11):4123–4129. https://doi.org/10.1021/jacs.7b00266

    Article  CAS  PubMed  Google Scholar 

  98. Park Y, Kim B, Jeong S, Jeon K, Chung K, Jung S (2020) Characteristics of hydrogen production by photocatalytic water splitting using liquid phase plasma over Ag-doped TiO2 photocatalysts. Environ Res 188(January):109630. https://doi.org/10.1016/j.envres.2020.109630

    Article  CAS  PubMed  Google Scholar 

  99. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  100. Qin D, Zhou Y, Wang W, Zhang C, Zeng G, Huang D et al (2020) Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO2: insights into performance, theories and perspective. J Mater Chem A 8(37):19156–19195. https://doi.org/10.1039/D0TA07460H

    Article  CAS  Google Scholar 

  101. Qin M, Ma J, Ke W, Qin P, Lei H, Tao H et al (2016) Perovskite solar cells based on low-temperature processed indium oxide electron selective layers. ACS Appl Mater Interfaces 8(13):8460–8466. https://doi.org/10.1021/acsami.5b12849

    Article  CAS  PubMed  Google Scholar 

  102. Qiu X, Li G, Sun X, Li L, Fu X (2008) Doping effects of Co2+ ions on ZnO nanorods and their photocatalytic properties. Nanotechnology 19(21):215703. https://doi.org/10.1088/0957-4484/19/21/215703

    Article  CAS  PubMed  Google Scholar 

  103. Quan LN, Rand BP, Friend RH, Mhaisalkar SG, Lee T-W, Sargent EH (2019) Perovskites for next-generation optical sources. Chem Rev 119(12):7444–7477. https://doi.org/10.1021/acs.chemrev.9b00107

    Article  CAS  PubMed  Google Scholar 

  104. Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041. https://doi.org/10.1021/jp065948f

    Article  CAS  Google Scholar 

  105. Rafique M, Mubashar R, Irshad M, Gillani SSA, Tahir MB, Khalid NR et al (2020) A comprehensive study on methods and materials for photocatalytic water splitting and hydrogen production as a renewable energy resource. J Inorg Organomet Polym Mater 30(10):3837–3861. https://doi.org/10.1007/s10904-020-01611-9

    Article  CAS  Google Scholar 

  106. Rajbongshi BM, Samdarshi SK (2014) ZnO and Co-ZnO nanorods—Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux. Mater Sci Eng B 182:21–28. https://doi.org/10.1016/j.mseb.2013.11.013

  107. Rajeshwar K, de Tacconi NR, Ghadimkhani G, Chanmanee W, Janáky C (2013) Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol. ChemPhysChem 14(10):2251–2259. https://doi.org/10.1002/cphc.201300080

  108. Ranjitha A, Thambidurai M, Shini F, Muthukumarasamy N, Velauthapillai D (2019) Effect of doped TiO2 film as electron transport layer for inverted organic solar cell. Mater Sci Energy Technol 2(3):385–388. https://doi.org/10.1016/j.mset.2019.02.006

    Article  Google Scholar 

  109. Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170(2–3):560–569. https://doi.org/10.1016/j.jhazmat.2009.05.064

    Article  CAS  PubMed  Google Scholar 

  110. Şahin Ç, Apostolopoulou A, Stathatos E (2018) New bipyridine ruthenium dye complexes with amide based ancillary ligands as sensitizers in semitransparent quasi-solid-state dye sensitized solar cells. Inorg Chim Acta 478:130–138. https://doi.org/10.1016/j.ica.2018.04.009

    Article  CAS  Google Scholar 

  111. Şahin Ç, Diker H, Sygkridou D, Varlikli C, Stathatos E (2020) Enhancing the efficiency of mixed halide mesoporous perovskite solar cells by introducing amine modified graphene oxide buffer layer. Renew Energy 146:1659–1666. https://doi.org/10.1016/j.renene.2019.07.162

    Article  CAS  Google Scholar 

  112. Sahu K, Dhonde M (2020) Microwave-assisted hydrothermal synthesis of Cu-doped TiO2 nanoparticles for efficient dye-sensitized solar cell with improved open-circuit voltage. Int J Energy Res 1–10. https://doi.org/10.1002/er.6169

  113. Sakthivel T, Ashok Kumar K, Ramanathan R, Senthilselvan J, Jagannathan K (2017) Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications. Mater Res Express 4(12):126310. https://doi.org/10.1088/2053-1591/aa9e36

    Article  CAS  Google Scholar 

  114. Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19. https://doi.org/10.1016/j.tsf.2015.12.064

  115. Samal A, Das DP (2018) Transfiguring UV light active “metal oxides” to visible light active photocatayst by reduced graphene oxide hypostatization. Catal Today 300:124–135. https://doi.org/10.1016/j.cattod.2017.03.052

    Article  CAS  Google Scholar 

  116. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474 LP–1476. https://doi.org/10.1126/science.258.5087.1474

  117. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–24293. https://doi.org/10.1021/jp065659r

    Article  CAS  PubMed  Google Scholar 

  118. Shakeel Ahmad M, Pandey AK, Abd Rahim N (2017) Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew Sustain Energy Rev 77:89–108. https://doi.org/10.1016/j.rser.2017.03.129

    Article  CAS  Google Scholar 

  119. Shi H, Long S, Hu S, Hou J, Ni W, Song C, Li K (2019) Applied catalysis B: environmental interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction. Appl Catal B 245:760–769. https://doi.org/10.1016/j.apcatb.2019.01.036

    Article  CAS  Google Scholar 

  120. Sivasakthi S, Gurunathan K (2020) Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance. Renew Energy 159:786–800. https://doi.org/10.1016/j.renene.2020.06.027

    Article  CAS  Google Scholar 

  121. Sivula K (2013) Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J Phys Chem Lett 4(10):1624–1633. https://doi.org/10.1021/jz4002983

    Article  CAS  PubMed  Google Scholar 

  122. Tan Y, Shu Z, Zhou J, Li T, Wang W, Zhao Z (2018) One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl Catal B 230:260–268. https://doi.org/10.1016/j.apcatb.2018.02.056

    Article  CAS  Google Scholar 

  123. Tanaka A, Teramura K, Hosokawa S, Kominami H, Tanaka T (2017) Chemical science visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem Sci 8:2574–2580. https://doi.org/10.1039/C6SC05135A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tayyaba S, Ashraf MW, Tariq MI, Akhlaq M, Balas VE, Wang N, Balas MM (2020) Simulation, analysis, and characterization of calcium-doped ZnO nanostructures for dye-sensitized solar cells. Energies 13:4863

    Article  CAS  Google Scholar 

  125. Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM (2011) Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 5(6):5158–5166. https://doi.org/10.1021/nn201243y

    Article  CAS  PubMed  Google Scholar 

  126. Tu W, Zhou Y, Li H, Li P, Zou Z (2015) Au@TiO2 yolk–shell hollow spheres for plasmon-induced photocatalytic reduction of CO2 to solar fuel via a local electromagnetic field. Nanoscale 7(34):14232–14236. https://doi.org/10.1039/C5NR02943K

    Article  CAS  PubMed  Google Scholar 

  127. Varlikli C, Diker H (2014) Aliofkhazraei M (ed) Titanium dioxide nanostructures in new and emerging energy technologies (Chapter 1 of Handbook of Functional Nanomaterials, vol 3). Nova Science Publishers, Inc.

    Google Scholar 

  128. Villa K, Black A, Domènech X, Peral J (2012) Nitrogen doped TiO2 for hydrogen production under visible light irradiation. Solar Energy 86(1):558–566. https://doi.org/10.1016/j.solener.2011.10.029

  129. Vittal R, Ho K-C (2017) Zinc oxide based dye-sensitized solar cells: a review. Renew Sustain Energy Rev 70:920–935. https://doi.org/10.1016/j.rser.2016.11.273

  130. Wang F, Xiao L, Chen J, Chen L, Fang R (2020) Regulating the electronic structure and water adsorption capability by constructing carbon-doped CuO hollow spheres for efficient photocatalytic hydrogen evolution. Chemsuschem 13:5711–5721. https://doi.org/10.1002/cssc.202001884

    Article  CAS  PubMed  Google Scholar 

  131. Wang F, Yang M, Zhang Y, Du J, Han D, Yang L et al (2020) Constructing m-TiO2/a-WOx hybrid electron transport layer to boost interfacial charge transfer for efficient perovskite solar cells. Chem Eng J 402:126303. https://doi.org/10.1016/j.cej.2020.126303

    Article  CAS  Google Scholar 

  132. Wang S, Wang A, Deng X, Xie L, Xiao A, Li C et al (2020) Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J Mater Chem A 8(25):12201–12225. https://doi.org/10.1039/D0TA03957H

    Article  CAS  Google Scholar 

  133. Wang W, Zhang J, Chen F, He D, Anpo M (2008) Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles. J Coll Interface Sci 323(1):182–186. https://doi.org/10.1016/j.jcis.2008.03.043

  134. Wang X, Li Q, Zhou C, Cao Z, Zhang R (2019) ZnO rod/reduced graphene oxide sensitized by a -Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. J Coll Interface Sci 554:335–343. https://doi.org/10.1016/j.jcis.2019.07.014

    Article  CAS  Google Scholar 

  135. Wang Z, Jiao X, Chen D, Li C (2020) Porous Copper/Zinc bimetallic oxides derived from MOFs for efficient photocatalytic reduction of CO2 to methanol. Catalysts 10:1127

    Article  CAS  Google Scholar 

  136. Wu D, Long M, Cai W, Chen C, Wu Y (2010) Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity. J Alloys Compd 502(2):289–294. https://doi.org/10.1016/j.jallcom.2010.04.189

  137. Wu G, Chen A (2008) Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. J Photochem Photobiol A Chem 195(1):47–53. https://doi.org/10.1016/j.jphotochem.2007.09.005

  138. Wu J, Bollinger AT, He X, Božović I (2017) Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547(7664):432–435. https://doi.org/10.1038/nature23290

    Article  CAS  PubMed  Google Scholar 

  139. Wu J, Huang Y, Ye W, Li Y (2017) CO2 reduction: from the electrochemical to photochemical approach. Adv Sci 4:1700194. https://doi.org/10.1002/advs.201700194

    Article  CAS  Google Scholar 

  140. Wu M, Ke S, Chen W, Zhang S, Zhu M, Zhang Y et al (2020) Optimization of the facet structure of cobalt oxide catalysts for enhanced hydrogen evolution reaction. Catal Sci Technol 10(4):1040–1047. https://doi.org/10.1039/C9CY01900F

    Article  CAS  Google Scholar 

  141. Xiang Q, Cheng B, Yu J (2015) Graphene-Based photocatalysts for solar-fuel generation. Angew Chemie Int Edn 54(39):11350–11366. https://doi.org/10.1002/anie.201411096

    Article  CAS  Google Scholar 

  142. Xiong Y, Gu D, Deng X, Tüysüz H, Gastel M Van, Schüth F, Marlow F (2018) High surface area black TiO2 templated from ordered mesoporous carbon for solar driven hydrogen evolution. Microporous Mesoporous Mater 268:162–169. https://doi.org/10.1016/j.micromeso.2018.04.018

  143. Xu F, Zhu B, Cheng B, Yu J, Xu J (2018) 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Adv Opt Mater 6(23):1800911. https://doi.org/10.1002/adom.201800911

    Article  CAS  Google Scholar 

  144. Xu L, Xiu Y, Liu F, Liang Y, Wang S (2020) Research progress in conversion of CO2 to valuable fuels. Molecules 25:3653

    Article  CAS  Google Scholar 

  145. Yang G, Jiang Z, Shi H, Xiao T, Yan Z (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20(25):5301–5309. https://doi.org/10.1039/C0JM00376J

    Article  CAS  Google Scholar 

  146. Yang L, Zhou H, Fan T, Zhang D (2014) Semiconductor photocatalysts for water oxidation: current status and challenges. Phys Chem Chem Phys 16(15):6810–6826. https://doi.org/10.1039/C4CP00246F

    Article  CAS  PubMed  Google Scholar 

  147. Yang Y, Xu D, Wu Q, Diao P (2016) Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci Rep 6:35158. https://doi.org/10.1038/srep35158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634. https://doi.org/10.1126/science.1209688

    Article  CAS  PubMed  Google Scholar 

  149. Yun S, Guo T, Li Y, Gao X, Huang A, Kang L (2020) Well-ordered vertically aligned ZnO nanorods arrays for high-performance perovskite solar cells. Mater Res Bull 130:110935. https://doi.org/10.1016/j.materresbull.2020.110935

  150. Yusuf H, Kumar S, Ashokkumar M (2019) Ultrasound assisted synthesis of reduced graphene oxide (rGO) supported InVO4-TiO2 nanocomposite for efficient hydrogen production. Ultrason Sonochem 53:1–10. https://doi.org/10.1016/j.ultsonch.2018.12.009

  151. Zada A, Qu Y, Ali S, Sun N, Lu H, Yan R et al (2018) Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path. J Hazard. Mater. 342:715–723. https://doi.org/10.1016/j.jhazmat.2017.09.005

  152. Zeng Y, Wu W, Lee S, Gao J (2007) Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation. Catal Commun 8(6):906–912. https://doi.org/10.1016/j.catcom.2006.09.023

  153. Zhang J, Vlachopoulos N, Jouini M (2016) Efficient solid-state dye sensitized solar cells: the influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material. Nano Energy 19:455–470. https://doi.org/10.1016/j.nanoen.2015.09.010

    Article  CAS  Google Scholar 

  154. Zhang S, Tang F, Liu J, Che W, Su H, Liu W et al (2017) MoS2-coated ZnO nanocomposite as an active heterostructure photocatalyst for hydrogen evolution. Radiat Phys Chem 137:104–107. https://doi.org/10.1016/j.radphyschem.2016.09.026

  155. Zhang S, Jin J, Li D, Fu Z, Gao S, Cheng S et al (2019) Increased power conversion efficiency of dye-sensitized solar cells with counter electrodes based on carbon materials. RSC Adv 9(38):22092–22100. https://doi.org/10.1039/c9ra03344k

    Article  CAS  Google Scholar 

  156. Zhang Y, Zhai G, Gao L, Chen Q, Ren J, Yu J et al (2020) Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment. Mater Sci Semicond Process 117:105205. doi.org/https://doi.org/10.1016/j.mssp.2020.105205

  157. Zhang Z-L, Li J-F, Wang X-L, Qin J-Q, Shi W-J, Liu Y-F et al (2017) Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer. Nanoscale Res Lett 12(1):43. https://doi.org/10.1186/s11671-016-1811-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zheng J, Deng X, Zhou X, Yu M, Xia Z, Chen X, Huang S (2019) Efficient formamidinium–methylammonium lead halide perovskite solar cells using Mg and Er co-modified TiO2 nanorods. J Mater Sci Mater Electron 30(12):11043–11053. https://doi.org/10.1007/s10854-019-01446-2

    Article  CAS  Google Scholar 

  159. Zheng L, Wang J, Xuan Y, Yan M, Yu X, Peng Y, Cheng Y-B (2019) A perovskite/silicon hybrid system with a solar-to-electric power conversion efficiency of 25.5%. J. Mater. Chem. A 7(46):26479–26489. https://doi.org/10.1039/C9TA10712F

  160. Zhou L, Shinde A, Guevarra D, Haber JA, Persson KA, Neaton JB, Gregoire JM (2020) Successes and opportunities for discovery of metal oxide photoanodes for solar fuels generators. ACS Energy Lett 5(5):1413–1421. https://doi.org/10.1021/acsenergylett.0c00067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cigdem Sahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahin, C., Varlikli, C. (2022). Visible Range Activated Metal Oxide Photocatalysts in New and Emerging Energy Applications. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_25

Download citation

Publish with us

Policies and ethics