Skip to main content

Electrocatalytic and Photo-catalytic Water Splitting

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

In the present time where our renewable energy sources are depleting, and sooth from industries and coal burning is making air poisonous to breathe, the need for a switch into a sustainable energy system has become a necessity. One fruitful solution to the problem is photo-electrochemical (PEC) water splitting. Implementing PEC for the power generation reduces the burden on fossil fuels for solar energy storage. The Sun being a natural and the most abundant energy source, a dilemma is how to most effectively capture that energy and store it but at the lowest cost; we would try to discuss this in the present chapter. Designing photo-electrocatalyst is one of the main challenge, keeping all the perspective of PEC in mind. Fabricating heterojunction using different functional and suitable material for PEC in a single catalyst enables to enlarge the area of light harvesting properties and enhancing water splitting efficiency by improving the photo-excited charge separation and increasing the chemical stability of the catalyst to make it viable. The chapter gives an overview on the designing of heterojunctions for enhancing PEC water splitting performance. Along with the heterojunction synthesis, recent progress in the heterojunction-based PEC system and the working mechanism behind the charge separation is also discussed in the chapter. The chapter also provides the future directions for PEC water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li Y, Li W, Ke T, Zhang P, Ren X, Deng L (2016) Electrochem Commun 69:68–71

    Article  CAS  Google Scholar 

  2. Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev

    Google Scholar 

  3. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  4. Liu Q, Zhang J (2013) Langmuir 29:3821–3828

    Article  CAS  PubMed  Google Scholar 

  5. Jukk K, Kongi N, Tammeveski K, Solla-GullĂ³n J, Feliu JM (2015) Electrochem Commun 56:11–15

    Article  CAS  Google Scholar 

  6. Li Z, Luo W, Zhang M, Feng J, Zou Z (2013) Energy Environ Sci 6:347–370

    Article  CAS  Google Scholar 

  7. Choudhary S, Upadhyay S, Kumar P, singh N, Satasangi VR, Shrivastav R, Das S (2012) Int J Hydrogen Energy 37:18713–18730

    Google Scholar 

  8. Acar C, Dincer I (2014) Int J Hydrogen Energy 39:1–12

    Article  CAS  Google Scholar 

  9. Wang L, Si W, Tong Y, Hou F, Pergolesi D, Hou J, Lipert T, Dou SX, liang J (2020) Carbon Energy 2:223–250

    Google Scholar 

  10. Pandey T, Nissimagoudar AS, Mishra A, Singh AKJ (2020) Mater Chem A 8:13812–13819

    Article  CAS  Google Scholar 

  11. Trasatti S (1986) Pure Appl Chem 58:955–966

    Article  CAS  Google Scholar 

  12. Bard A, Faulkner L (2001) Electrochemical methods fundamentals and applications. Wiley. 0-471-04372-9

    Google Scholar 

  13. Tamirat AG, Rick J, Dubale AA, Su W-N, Hwang B (2016) J Nanoscale Horiz 1:243–267

    Article  CAS  Google Scholar 

  14. Kim JH, Lee JS (2019) Adv Mater 1806938

    Google Scholar 

  15. Jang JW, Friedrich D, Muller S, Lampers M, Hempel H, Lardhi S, Cao Z, Harb M, Cavallo L, Heller R, Eichberger R, krol R, Abdi F (2017) Adv Energy Mater 7:1701536

    Google Scholar 

  16. Baxter JB, Aydil ES (2005) Appl Phys Lett 86:053114

    Google Scholar 

  17. Jayaraman L, Tee S, Kumar Y, Lee PS, Liew CJJ, Chi SL, Hor D, Ramakrishna TSA, Luo S (2014) Mater Chem A 2:19290–19297

    Google Scholar 

  18. Zhang W, albero J, Xi Lange KM, Garcia H, Wang X, Shalom M (2017) ACS Appl Mater Interfaces 38:32667–32677

    Google Scholar 

  19. Ruan Q, Luo W, Xie J, Wang Y, Liu X, Bai Z, Carmalt CJ, Tang J (2017) Angew Chem 129:8333–8337

    Article  Google Scholar 

  20. Ye K, Li H, Huang D, Xia S, Qiu W, Li M, Hu Y, Mai W, Ji H, Yang S (2019) Nat Commun 10:3687

    Google Scholar 

  21. Kalanur SS, Yoo I, Eom K, Seo H (2018) J Catal 357:127–137

    Article  CAS  Google Scholar 

  22. Zhang R, Wang Y, Chen T, Qu F, Liu Z, Du G, Asir AM, Gao T, Sun X (2017) ACS Sustain Chem Eng 9:7502–7506

    Article  CAS  Google Scholar 

  23. Tamirat AG, Su W-N, Dubale AA, Chena H-M, Hwang B-J (2015) J Mater Chem A 3:5949–5961

    Google Scholar 

  24. Huang J, Hu G, Ding Y, Pang M, Ma B (2016) J Catal 340:261–269

    Article  CAS  Google Scholar 

  25. Cesar I, Kay A, Martinez JAG, Grätzel M (2006) J Am Chem Soc 128:4582–4583

    Article  CAS  PubMed  Google Scholar 

  26. Yan D, Tao J, Kisslinger K, Cen J, Wu Q, Orlovb A, Liu M (2015) Nanoscale 7:18515–18523

    Article  CAS  PubMed  Google Scholar 

  27. Annamalai A, Lee HH, Choi SH, Lee SY, Gracia-Espino E, Subramanian A, Park J, Kong K, Jang JS (2016) Sn/Be Sci Rep 6:28183

    Article  CAS  Google Scholar 

  28. Chaudhary P, Ingole PP (2020) Int J Hydrog Energy 45:16060–16070

    Article  CAS  Google Scholar 

  29. Kim HI, Monllor-Satoca D, Kim W, Choi W (2015) Energy Environ Sci 8:247–257

    Article  CAS  Google Scholar 

  30. Cui H, Zhao W, Yang C, Yin H, Lin T, Shan Y, Xie Y, Gua H, Huang FJ (2014) Mater Chem A 2:8612–8616

    Article  CAS  Google Scholar 

  31. Lin CJ, Lu YT, Hsieh CH, Chien SH (2009) Appl Phys Lett 94:113102

    Google Scholar 

  32. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC et al (2011) Nano Lett 11(7):3026–3033

    Article  CAS  PubMed  Google Scholar 

  33. Kusior A, Wnuk A, Trenczek-Zajac A, Zakrzewska K, Radecka M (2015) Int J Hydrogen Energy 40:4936–4944

    Article  CAS  Google Scholar 

  34. Fu S, Zhang B, Hu H, Zhang Y, Bi Y (2018) Catal Sci Technol 8:2789–2793

    Article  CAS  Google Scholar 

  35. Lia J, Jina X, Lib R, Zhaob Y, Wanga X, Liua X, Hang Jiaoa H (2019) Appl Catal B 1–8:240

    Article  CAS  Google Scholar 

  36. Luo J, Steier L, Son MK, Schreier M, Mayer MT, Gratzel M (2016) Nano Lett 16(3):1848–1857

    Article  CAS  PubMed  Google Scholar 

  37. Chou J-C, Lin S-A, Lee C-Y, Gan J-Y (2013) J Mater Chem A 1:5908–5914

    Google Scholar 

  38. Zheng JY, Kang MJ, Song G, Son SI, Suh SP, Kim CW, Kang YS (2012) CrystEngComm 14:6957–6961

    Article  CAS  Google Scholar 

  39. Fu L, Yu H, Li Y, Zhang C, Wang X, Shao Z, Yi B (2014) Phys Chem Chem Phys 16:4284–4290

    Article  CAS  PubMed  Google Scholar 

  40. Gonçalves RH, Lima BHR, Leite ER (2011) J Am Chem Soc 133:6012–6019

    Article  PubMed  CAS  Google Scholar 

  41. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Nano Lett 11:2119–2125

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Cai YY, Tian ZF, Ruan GS, Ye YX, Liang CH, Shao GS (2014) Nano Energy 9:282–290

    Article  CAS  Google Scholar 

  43. Mohapatra SK, John SE, Banerjee S, Misra M (2009) Chem Mater 21:3048–3055

    Article  CAS  Google Scholar 

  44. Qiu Y, Leung SF, Zhang Q, Hua B, Lin Q, Wei Z, Tsui K-H, Zhang Y, Yang S, Fan Z (2014) Nano Lett:14:2123–2129

    Google Scholar 

  45. Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Angew Chem 49:6405–6408

    Google Scholar 

  46. Zandi O, Hamann TW (2014) J Phys Chem Lett 5:1522–1526

    Article  CAS  PubMed  Google Scholar 

  47. Zhong DK, Cornuz M, Sivula K, Gratzel M, Gamelin DR (2011) Energy Environ Sci 4:1759–1764

    Google Scholar 

  48. Young KMH, Hamann TW (2014) Chem Commun 50:8727–8730

    Article  CAS  Google Scholar 

  49. Xi L, Tran PD, Chiam SY, Bassi PS, Mak WF, Mulmudi HK, Batabyal SK, Barber J, Loo JSC, Wong LH (2012) J Phys Chem C 116:13884–13889

    Google Scholar 

  50. Formal F, Tetreault L, Cornuz N, Moehl M, Gratzel M, Sivula K (2011) Chem Sci 2:737–743

    Google Scholar 

  51. Yang X, Liu R, Du C, Dai P, Zheng Z, Wang D (2014) ACS Appl Mater Interfaces 6:12005–12011

    Article  CAS  PubMed  Google Scholar 

  52. Hisatomi T, Formal FL, Cornuz M, Brillet J, Tetreault N, Sivula K, Gratzel M (2011) Energy Environ Sci 4:2512–2515

    Article  CAS  Google Scholar 

  53. Chaudhary P, Ingole PP (2018) Int J Hydrogen Energy 43:1344–1354

    Article  CAS  Google Scholar 

  54. Du C, Yang X, Mayer MT, Hoyt H, Xie J, McMahon G (2013) Angew Chem Int Ed 52:12692–12705

    Article  CAS  Google Scholar 

  55. Zeng M, Peng X, Liao J, Wang G, Li Y, Li J Phys Chem Chem Phys 18:17404–17413

    Google Scholar 

  56. Ikram A, Sahai S, Rai S, Dass S, Shrivastav R, Satsangi VR (2016) Phys Chem Chem Phys 18:5815–5821

    Article  CAS  Google Scholar 

  57. Zhang Z, Li X, Gao C, Teng F, Wang Y, Chen L (2015) J Mat Chem A 3:12769–12776

    Article  CAS  Google Scholar 

  58. Sahai S, Ikram A, Rai S, Dass S, Shrivastav R, Satsangi VR (2014) Int J Hydrog Energy 39:11860–11866

    Google Scholar 

  59. Chen CK, Shen YP, Chen HM, Chen C-J, Chan T-S, Lee J-F, Liu R-S (2014) Eur J Inorg Chem 773–779

    Google Scholar 

  60. Sheng W, Sun B, Shi T, Tan X, Peng Z, Liao G (2014) ACS Nano 8(7):7163–7169

    Article  CAS  PubMed  Google Scholar 

  61. Chouhan N, Yeh CL, Hu SF, Huang JH, Tsai CW, Liu RS (2010) J Electrochem Soc 157:1430–1433

    Google Scholar 

  62. Chouhan N, Yeh CL, Hu S-F, Liu R-S, Chang W-S, Chen K-H (2011) Chem Commun 47:3493–3495

    Article  CAS  Google Scholar 

  63. Su F, Lu J, Tian Y, Ma X, Gong J (2013) Phys Chem Chem Phys 15:12026–12032

    Article  CAS  PubMed  Google Scholar 

  64. Baek JH, Kim BJ, Han GS, Hwang SW, Kim DR, Cho IS, Jung HS (2017) ACS Appl. Mater Interfaces 9(2):1479–1487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin P. Ingole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, P., Ingole, P.P. (2022). Electrocatalytic and Photo-catalytic Water Splitting. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_22

Download citation

Publish with us

Policies and ethics