Skip to main content

Nanoenhanced Photocatalytic Approach for Separation of Oily Emulsion from Aqueous Effluents: Recent Trends, Future Perspective and Challenges

  • Chapter
  • First Online:
Green Photocatalytic Semiconductors

Abstract

Supply of clean, freshwater for safe consumption has become a greatest challenge. Water resources are contaminated by anthropogenic as well as man-made activities day by day. Thus, it is required to utilize advanced wastewater treatment to ensure higher environmental protection and reuse the discharged water effectively. Oily wastewater is extremely toxic for aquatic organism as well as human being. Treating oil-contaminated water can be difficult because some of the microscopic compounds are hard to eliminate. The currently used methods are suitable for removing floating and suspended oily droplets from water. However, these conventional methods are not efficient for eliminating small, finely dispersed, colloidal oily particles. Application of membrane filtration is also restricted up to a certain extent due to fouling. In-depth research has been carried out to reduce membrane fouling. This chapter overviews the conventional techniques for elimination of oils from aqueous effluents. The chapter focuses the limitations of the conventional processes. The subsequent section of the chapter also illustrates the importance of using photocatalytic membrane. The concluding part of the chapter illustrates the future aspects of membrane technology and promising solutions associated with membrane modification methods using photocatalytic and/or hydrophilic nanomaterials and nanocomposite to enhance the permeate quality and water flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Padaki M, Surya Murali R, Abdullah MS, Misdan N, Moslehyani A, Kassim MA, Hilal N, Ismail AF (2015) Membrane technology enhancement in oil–water separation. A review. Desalination 357:197–207. https://doi.org/10.1016/j.desal.2014.11.023

    Article  CAS  Google Scholar 

  2. Poulopoulos SG, Voutsas EC, Grigoropoulou HP, Philippopoulos CJ (2005) Stripping as a pretreatment process of industrial oily wastewater. J Hazard Mater 117(2–3):135–139. https://doi.org/10.1016/j.jhazmat.2004.08.033

    Article  CAS  PubMed  Google Scholar 

  3. Li C, Fu L, Stafford J, Belosevic M, Gamal El-Din M (2017) The toxicity of oil sands process-affected water (OSPW): a critical review. Sci Total Environ 601–602:1785–1802. https://doi.org/10.1016/j.scitotenv.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  4. Yu L, Han M, He F (2013) A review of treating oily wastewater. Arab J Chem 10:S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020

    Article  CAS  Google Scholar 

  5. Jaramillo-Gutiérrez MI, Rivero EP, Cruz-Díaz MR, Niño-Gómez ME, Pedraza-Avella JA (2016) Photoelectrocatalytic hydrogen production from oilfield-produced wastewater in a filter-press reactor using TiO2-based photoanodes. Catal Today 266:17–26. https://doi.org/10.1016/j.cattod.2015.12.008

    Article  CAS  Google Scholar 

  6. Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170(2–3):530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044

    Article  CAS  PubMed  Google Scholar 

  7. Singh MM, Szafran Z, Ibanez JG (1998) Laboratory experiments on the electrochemical remediation of environment. Part 4: color removal of simulated wastewater by electrocoagulation-electroflotation. J Chem Edu 75(8):1040–1041. https://doi.org/10.1021/ed075p1040

  8. Nordvik AB, Simmons JL, Bitting KR, Lewis A, Strøm-Kristiansen T (1996) Oil and water separation in marine oil spill clean-up operations. Spill Sci Technol Bull 3(3):107–122. https://doi.org/10.1016/s1353-2561(96)00021-7

    Article  CAS  Google Scholar 

  9. Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15(3):139–155. https://doi.org/10.1016/s0892-6875(01)00216-3

    Article  CAS  Google Scholar 

  10. Painmanakul P, Sastaravet P, Lersjintanakarn S, Khaodhiar S (2010) Effect of bubble hydrodynamic and chemical dosage on treatment of oily wastewater by Induced Air Flotation (IAF) process. Chem Eng Res Des 88(5–6):693–702. https://doi.org/10.1016/j.cherd.2009.10.009

    Article  CAS  Google Scholar 

  11. Zhou L, Wang W, Liu S, Zhang L, Xu H, Zhu W (2006) A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A: Chem 252(1–2):120–124. https://doi.org/10.1016/j.molcata.2006.01.052

    Article  CAS  Google Scholar 

  12. Benito JM, Ríos G, Ortea E, Fernández E, Cambiella A, Pazos C, Coca J (2002) Design and construction of a modular pilot plant for the treatment of oil-containing wastewaters. Desalination 147(1–3):5–10. https://doi.org/10.1016/s0011-9164(02)00563-5

    Article  CAS  Google Scholar 

  13. Asselin M, Drogui P, Brar SK, Benmoussa H, Blais J-F (2008) Organics removal in oily bilgewater by electrocoagulation process. J Hazard Mater 151(2–3):446–455. https://doi.org/10.1016/j.jhazmat.2007.06.008

    Article  CAS  PubMed  Google Scholar 

  14. Ö_gütveren ÜB, Koparal S, Taylor P, Street M, Wt L (1997) Electrocoagulation for oil-water emulsion treatment. J Environ Sci Health. Part A Environ Sci Eng Toxicol 32(9–10):2507–2520. https://doi.org/10.1080/10934529709376699

  15. Matos M, García CF, Suárez MA, Pazos C, Benito JM (2016) Treatment of oil-in-water emulsions by a destabilization/ultrafiltration hybrid process: Statistical analysis of operating parameters. J Taiwan Inst Chem Eng 59:295–302. https://doi.org/10.1016/j.jtice.2015.08.006

    Article  CAS  Google Scholar 

  16. Liu G, Ye Z, Tong K, Zhang Y (2013) Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochem Eng J 72:48–53. https://doi.org/10.1016/j.bej.2012.12.017

    Article  CAS  Google Scholar 

  17. Kumar P, Sharma N, Ranjan R, Kumar S, Bhat Z, Jeong DK (2013) Perspective of membrane technology in dairy industry: a review Asian-Australas. J Anim Sci 26:1347

    Google Scholar 

  18. Ikhsan SNW, Yusof N, Aziz F (2017) A review of oilfield wastewater treatment using membrane filtration over conventional technology. Malays J Anal Sci 21(3):643–658. https://doi.org/10.17576/mjas-2017-2103-14

  19. Madaeni SS, Ghaemi N (2007) Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J Membr Sci 303(1–2):221–233. https://doi.org/10.1016/j.memsci.2007.07.017

    Article  CAS  Google Scholar 

  20. Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158(7):2335–2349. https://doi.org/10.1016/j.envpol.2010.03.024

    Article  CAS  PubMed  Google Scholar 

  21. Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375(1–2):1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  22. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084

    Article  CAS  Google Scholar 

  23. Yu X, Ji Q, Zhang J, Nie Z, Yang H (2018) Photocatalytic degradation of diesel pollutants in seawater under visible light. Reg Stud Mar Sci 18:139–144. https://doi.org/10.1016/j.rsma.2018.02.006

    Article  Google Scholar 

  24. Johnston JE, Lim E, Roh H (2019) Impact of upstream oil extraction and environmental public health: a review of the evidence. Sci Total Environ 657:187–199. https://doi.org/10.1016/j.scitotenv.2018.11.483

    Article  CAS  PubMed  Google Scholar 

  25. Han L, Tan YZ, Netke T, Fane AG, Chew JW (2017) Understanding oily wastewater treatment via membrane distillation. J Membr Sci 539:284–294. https://doi.org/10.1016/j.memsci.2017.06.012

    Article  CAS  Google Scholar 

  26. Cote RP (1976) The effects of petroleum refinery liquid wastes on aquatic life, with special emphasis on the Canadian environment. Natl Res Counc Canada. K1A 0R6 (NRC Associate Committee on Scientific Criteria for Environmental Quality), 77

    Google Scholar 

  27. Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23(5):845–851. https://doi.org/10.1016/s1001-0742(10)60517-7

    Article  CAS  Google Scholar 

  28. Tasker TL, Burgos WD, Piotrowski P, Castillo-Meza L, Blewett TA, Ganow KB, Stallworth A, Delompré PLM, Goss GG, Fowler LB, Vanden Heuvel JP, Dorman F, Warner NR (2018) Environmental and human health impacts of spreading oil and gas wastewater on roads. Environ Sci Technol 52(12):7081–7091. https://doi.org/10.1021/acs.est.8b00716

    Article  CAS  PubMed  Google Scholar 

  29. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  30. Nwankwoala RNP, Gorgewill OA (2006) Analysis of the occurrence of cancer and other tumors in Rivers and Bayelsa States, Nigeria from December 1997–December 2000. Afr J Appl Zool Environ Biol 8:48–53

    Google Scholar 

  31. Coca J, Gutiérrez G, Benito J (2011) Treatment of Oily Wastewater. In: Coca-Prados J, Gutiérrez-Cervelló G (eds) Water purification and management. Springer, Dordrecht, The Netherlands, pp 1–55

    Chapter  Google Scholar 

  32. Jiménez S, Micó MM, Arnaldos M, Medina F, Contreras S (2018) State of the art of produced water treatment. Chemosphere 192:186–208. https://doi.org/10.1016/j.chemosphere.2017.10.139

    Article  CAS  PubMed  Google Scholar 

  33. Gryta M (2001) Purification of oily wastewater by hybrid UF/MD. Water Res 35(15):3665–3669. https://doi.org/10.1016/s0043-1354(01)00083-5

    Article  CAS  PubMed  Google Scholar 

  34. Souza RS, Porto PSS, Pintor AMA, Ruphuy G, Costa MF, Boaventura RAR, Vilar VJP (2015) New insights on the removal of mineral oil from oil-in-water emulsions using cork by-products: effect of salt and surfactants content. Chem Eng J 285:709–717. https://doi.org/10.1016/j.cej.2015.10.007

    Article  CAS  Google Scholar 

  35. Beychok MR (1967) Aqueous wastes from petroleum and petrochemical plants, 1st edn. Wiley, New York

    Google Scholar 

  36. Alzahrani S, Mohammad AW (2014) Challenges and trends in membrane technology implementation for produced water treatment: a review. J Water Process Eng 4:107–133. https://doi.org/10.1016/j.jwpe.2014.09.007

    Article  Google Scholar 

  37. Edzwald JK (2010) Dissolved air flotation and me. Water Res 44(7):2077–2106. https://doi.org/10.1016/j.watres.2009.12.040

    Article  CAS  PubMed  Google Scholar 

  38. Kriipsalu M, Marques M, Nammari DR, Hogland W (2007) Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics. J Hazard Mater 148(3):616–622. https://doi.org/10.1016/j.jhazmat.2007.03.017

    Article  CAS  PubMed  Google Scholar 

  39. Bai Z, Wang H, Tu ST (2011) Oil–water separation using hydrocyclones enhanced by air bubbles. Chem Eng Res Des 89(1):55–59. https://doi.org/10.1016/j.cherd.2010.04.012

    Article  CAS  Google Scholar 

  40. Salahi A, Gheshlaghi A, Mohammadi T, Madaeni SS (2010) Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 262(1–3):235–242. https://doi.org/10.1016/j.desal.2010.06.021

    Article  CAS  Google Scholar 

  41. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41. https://doi.org/10.1016/j.seppur.2003.10.006

    Article  CAS  Google Scholar 

  42. Cañizares P, Martínez F, Jiménez C, Sáez C, Rodrigo MA (2008) Coagulation and electrocoagulation of oil-in-water emulsions. J Hazard Mater 151(1):44–51. https://doi.org/10.1016/j.jhazmat.2007.05.043

    Article  CAS  PubMed  Google Scholar 

  43. Zeng Y, Yang C, Zhang J, Pu W (2007) Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation. J Hazard Mater 147(3):991–996. https://doi.org/10.1016/j.jhazmat.2007.01.129

    Article  CAS  PubMed  Google Scholar 

  44. Zeng Y, Park J (2009) Characterization and coagulation performance of a novel inorganic polymer coagulant—poly-zinc-silicate-sulfate. Colloids Surf A 334(1–3):147–154. https://doi.org/10.1016/j.colsurfa.2008.10.009

    Article  CAS  Google Scholar 

  45. Kis Á, Laczi K, Zsíros S, Rákhely G, Perei K (2015) Biodegradation of animal fats and vegetable oils by Rhodococcus erythropolis PR4. Int Biodeterior Biodegradation 105:114–119. https://doi.org/10.1016/j.ibiod.2015.08.015

    Article  CAS  Google Scholar 

  46. Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2(6):587–594. https://doi.org/10.1111/j.1751-7915.2009.00151.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mansourizadeh A, Javadi Azad A (2014) Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil–water separation. J Polym Res 21(3):1–9. https://doi.org/10.1007/s10965-014-0375-x

    Article  CAS  Google Scholar 

  48. Zhao X, Wang Y, Ye Z, Borthwick AGL, Ni J (2006) Oil field wastewater treatment in Biological Aerated Filter by immobilized microorganisms. Process Biochem 41(7):1475–1483. https://doi.org/10.1016/j.procbio.2006.02.006

    Article  CAS  Google Scholar 

  49. Van der Bruggen B (2009) Chemical modification of polyethersulfone nanofiltration membranes: a review. J Appl Polym Sci 114(1):630–642. https://doi.org/10.1002/app.30578

    Article  CAS  Google Scholar 

  50. Zhu Y, Wang D, Jiang L, Jin J (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater 6(5):e101. https://doi.org/10.1038/am.2014.23

    Article  CAS  Google Scholar 

  51. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471. https://doi.org/10.1021/cr800208y

    Article  CAS  PubMed  Google Scholar 

  52. Mittal P, Jana S, Mohanty K (2011) Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater. Desalination 282:54–62. https://doi.org/10.1016/j.desal.2011.06.071

    Article  CAS  Google Scholar 

  53. Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang C (2016) A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J Membr Sci 506:60–70. https://doi.org/10.1016/j.memsci.2016.01.053

    Article  CAS  Google Scholar 

  54. Kim MJ, Yoo GY, Yoo CK (2011) Development of combined fouling model in a membrane bioreactor. Asia-Pac J Chem Eng 6(3):423–432. https://doi.org/10.1002/apj.589

    Article  CAS  Google Scholar 

  55. Zhang W, Ding L, Luo J, Jaffrin MY, Tang B (2016) Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: a critical review. Chem Eng J 302:446–458. https://doi.org/10.1016/j.cej.2016.05.071

    Article  CAS  Google Scholar 

  56. Ebrahimi M, Ashaghi KS, Engel L, Willershausen D, Mund P, Bolduan P, Czermak P (2009) Characterization and application of different ceramic membranes for the oil-field produced water treatment. Desalination 245(1–3):533–540. https://doi.org/10.1016/j.desal.2009.02.017

    Article  CAS  Google Scholar 

  57. Faibish RS, Cohen Y (2001) Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions. J Membr Sci 185(2):129–143. https://doi.org/ https://doi.org/10.1016/S0376-7388(00)00595-0.

  58. Arthanareeswaran G, Mohan D, Raajenthiren M (2010) Preparation, characterization and performance studies of ultrafiltration membranes with polymeric additive. J Membr Sci 350(1–2):130–138. https://doi.org/10.1016/j.memsci.2009.12.020

  59. Liang S, Kang Y, Tiraferri A, Giannelis EP, Huang X, Elimelech M (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl Mater Interfaces 5(14):6694–6703. https://doi.org/10.1021/am401462e

    Article  CAS  PubMed  Google Scholar 

  60. Lipp P, Lee CH, Fane AG, Fell CJD (1988) A fundamental study of the ultrafiltration of oil-water emulsions. J Membr Sci 36:161–177. https://doi.org/10.1016/0376-7388(88)80014-0

    Article  CAS  Google Scholar 

  61. Chakrabarty B, Ghoshal AK, Purkait MK (2008) Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J Membr Sci 325(1):427–437. https://doi.org/10.1016/j.memsci.2008.08.007

    Article  CAS  Google Scholar 

  62. Al-Alawy AF, Al-Ameri MK (2017) Treatment of simulated oily wastewater by ultrafiltration and nanofiltration processes. Iraqi J Chem Pet Eng 18:71–85

    Google Scholar 

  63. Chen W, Peng J, Su Y, Zheng L, Wang L, Jiang Z (2009) Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes. Sep Purif Technol 66(3):591–597. https://doi.org/10.1016/j.seppur.2009.01.009

    Article  CAS  Google Scholar 

  64. Sadeghi I, Aroujalian A, Raisi A, Dabir B, Fathizadeh M (2013) Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions. J Membr Sci 430:24–36. https://doi.org/10.1016/j.memsci.2012.11.051

    Article  CAS  Google Scholar 

  65. Salahi A, Mohammadi T, Mosayebi Behbahani R, Hemmati M (2015) Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: synthesis, characterization, ANFIS modeling, and performance. J Environ Chem Eng 3(1):170–178. https://doi.org/10.1016/j.jece.2014.10.021

    Article  CAS  Google Scholar 

  66. Kong J, Li K (1999) Oil removal from oil-in-water emulsions using PVDF membranes. Sep Purif Technol 16(1):83–93. https://doi.org/10.1016/s1383-5866(98)00114-2

    Article  CAS  Google Scholar 

  67. Zhai T-L, Du Q, Xu S, Wang Y, Zhang C (2017) Electrospun nanofibrous membrane of porous fluorine-containing triptycene-based polyimides for oil/water separation. RSC Adv 7(36):22548–22552. https://doi.org/10.1039/c7ra01614j

    Article  CAS  Google Scholar 

  68. Li H-J, Cao Y-M, Qin J-J, Jie X-M, Wang T-H, Liu J-H, Yuan Q (2006) Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation. J Membr Sci 279(1–2):328–335. https://doi.org/10.1016/j.memsci.2005.12.025

    Article  CAS  Google Scholar 

  69. He Y, Jiang Z-W (2008) Technology review: Treating oilfield wastewater. Filtr Sep 45(5):14–16. https://doi.org/10.1016/s0015-1882(08)70174-5

    Article  CAS  Google Scholar 

  70. Mueller J, Cen Y, Davis RH (1997) Cross flow microfiltration of oily water. J Membr Sci 129:221–235

    Article  CAS  Google Scholar 

  71. Hua F, Tsang YF, Wang Y, Chan S, Chua H, Sin S (2007) Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem Eng J 128:169–175. http://hdl.handle.net/10397/23698

  72. Silalahi SH, Leiknes T (2011) High frequency back-pulsing for fouling development control in ceramic microfiltration for treatment of produced water. Desalin Water Treat 28:137–152. https://doi.org/10.5004/dwt.2011.2482

    Article  CAS  Google Scholar 

  73. Reyhani A, Meighani HM (2016) Optimal operating conditions of micro-and ultra-filtration systems for produced-water purification: Taguchi method and economic investigation. Desalin Water Treat 57:19642–19654. https://doi.org/10.1080/19443994.2015.1101714

    Article  CAS  Google Scholar 

  74. Abadi SRH, Sebzari MR, Hemati M, Rekabdar F, Mohammadi T (2011) Ceramic membrane performance in microfiltration of oily wastewater. Desalination 265:222–228. https://doi.org/10.1016/j.desal.2010.07.055

    Article  CAS  Google Scholar 

  75. Bayat A, Mahdavi HR, Kazemimoghaddam M, Mohammadi T (2016) Preparation and characterization of-alumina ceramic ultrafiltration membranes for pretreatment of oily wastewater Desalin. Water Treat 57:24322–24332. https://doi.org/10.1080/19443994.2016.1146922

    Article  CAS  Google Scholar 

  76. Zhong J, Sun X, Wang C (2003) Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep Purif Technol 32:93–98. https://doi.org/10.1016/j.arabjc.2013.07.020

    Article  CAS  Google Scholar 

  77. Abdalla M, Nasser M, Fard AK, Qiblawey H, Benamor A, Judd S (2019) Impact of combined oil-in-water emulsions and particulate suspensions on ceramic membrane fouling and permeability recovery. Sep Purif Technol 212:215–222. https://doi.org/10.1016/j.seppur.2018.11.017

    Article  CAS  Google Scholar 

  78. Ebrahimi M, Willershausen D, Ashaghi KS, Engel L, Placido L, Mund P, Bolduan P, Czermak P (2010) Investigations on the use of di_erent ceramic membranes for e_cient oil-field produced water treatment. Desalination 250:991–996

    Article  CAS  Google Scholar 

  79. Pan Y, Wang T, Sun H, Wang W (2012) Preparation and application of titanium dioxide dynamic membranes in microfiltration of oil-in-water emulsions. Sep Purif Technol 89:78–83. https://doi.org/10.1016/j.seppur.2012.01.010

    Article  CAS  Google Scholar 

  80. Zhu L, Chen M, Dong Y, Tang CY, Huang A, Li L (2016) A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly e_cient separation of oil-in-water emulsion. Water Res 90:277–285. https://doi.org/10.1016/j.watres.2015.12.035

    Article  CAS  PubMed  Google Scholar 

  81. Abbasi M, Mirfendereski M, Nikbakht M, Golshenas M, Mohammadi T (2010) Performance study of mullite and mullite–alumina ceramic MF membranes for oily wastewaters treatment. Desalination 259:169–178. https://doi.org/10.1016/j.desal.2010.04.013

    Article  CAS  Google Scholar 

  82. Kovács I, Veréb G, Kertész S, Beszédes S, Hodúr C, László Z (2018) Investigation of surface and filtration properties of TiO2 coated ultrafiltration polyacrylonitrile membranes. Water Sci Technol 77(4):931–938. https://doi.org/10.2166/wst.2017.610

    Article  CAS  PubMed  Google Scholar 

  83. Miller D, Dreyer D, Bielawski C, Paul D, Freeman B (2016) Surface modification of water purification membranes: a review autoren. Angewandte Chemie Int Edition 56(17):4662–4711. https://doi.org/10.1002/ange.201601509

  84. Boshrouyeh Ghandashtani M, Tavangar T, Zokaee Ashtiani F, Karimi M, Fouladitajar A (2018) Experimental investigation and mathematical modeling of nano‐composite membrane fabrication process: focus on the role of solvent type. Asia-Pac J Chem Eng 13(6):e2260. https://doi.org/10.1002/apj.2260

  85. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275. https://doi.org/10.1016/j.memsci.2014.11.019

    Article  CAS  Google Scholar 

  86. Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184. https://doi.org/10.1016/j.memsci.2014.08.016

    Article  CAS  Google Scholar 

  87. Molinari R, Palmisano L, Drioli E, Schiavello M (2002) Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J Membr Sci 206(1–2):399–415. https://doi.org/10.1016/s0376-7388(01)00785-2

    Article  CAS  Google Scholar 

  88. Zhang T, Wang X, Zhang X (2014) Recent progress in TiO2-mediated solar photocatalysis for industrial wastewater treatment. Int J Photoenergy 2014:1–12. https://doi.org/10.1155/2014/607954

    Article  CAS  Google Scholar 

  89. Rahimpour A, Jahanshahi M, Rajaeian B, Rahimnejad M (2011) TiO2 entrapped nano-composite PVDF/SPES membranes: preparation, characterization, antifouling and antibacterial properties. Desalination 278(1–3):343–353. https://doi.org/10.1016/j.desal.2011.05.049

    Article  CAS  Google Scholar 

  90. Venkatesh K, Arthanareeswaran G, Bose AC (2016) PVDF mixed matrix nano-filtration membranes integrated with 1D-PANI/TiO2 NFs for oil–water emulsion separation. RSC Adv 6(23):18899–18908. https://doi.org/10.1039/c5ra27022g

    Article  CAS  Google Scholar 

  91. Rahimpour A, Madaeni SS, Taheri AH, Mansourpanah Y (2008) Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J Membr Sci 313(1–2):158–169. https://doi.org/10.1016/j.memsci.2007.12.075

    Article  CAS  Google Scholar 

  92. Zhou J, Chang Q, Wang Y, Wang J, Meng G (2010) Separation of stable oil– water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Sep Purif Technol 75(3):243–248. https://doi.org/10.1016/j.seppur.2010.08.008

    Article  CAS  Google Scholar 

  93. Ahmad AL, Majid MA, Ooi BS (2011) Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation. Desalination 268(1–3):266–269. https://doi.org/10.1016/j.desal.2010.10.017

    Article  CAS  Google Scholar 

  94. Krishnamurthy PH, Yogarathinam LT, Gangasalam A, Ismail AF (2016) Influence of copper oxide nanomaterials in a poly(ether sulfone) membrane for improved humic acid and oil-water separation. J Appl Polym Sci 133(36):1–10. https://doi.org/10.1002/app.43873

    Article  CAS  Google Scholar 

  95. Leo CP, Cathie Lee WP, Ahmad AL, Mohammad AW (2012) Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol 89:51–56. https://doi.org/10.1016/j.seppur.2012.01.002

    Article  CAS  Google Scholar 

  96. Li YS, Yan L, Xiang CB, Hong LJ (2006) Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes. Desalination 196(1–3):76–83. https://doi.org/10.1016/j.desal.2005.11.021

    Article  CAS  Google Scholar 

  97. Jamshidi Gohari R, Halakoo E, Lau WJ, Kassim MA, Matsuura T, Ismail AF (2014) Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process. RSC Adv 4(34):17587–17596. https://doi.org/10.1039/c4ra00032c

    Article  CAS  Google Scholar 

  98. Yuliwati E, Ismail AF (2011) Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 273(1):226–234. https://doi.org/10.1016/j.desal.2010.11.023

    Article  CAS  Google Scholar 

  99. Ong CS, Lau WJ, Goh PS, Ng BC, Matsuura T, Ismail AF (2014) Effect of PVP molecular weights on the properties of PVDF-TiO2 composite membrane for oily wastewater treatment process. Sep Sci Technol 49(15):2303–2314. https://doi.org/10.1080/01496395.2014.928323

    Article  CAS  Google Scholar 

  100. Ong C, Lau W, Goh P, Ng B, Ismail A (2015) Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system. Desalin Water Treat 53:1213–1223

    CAS  Google Scholar 

  101. Yi XS, Shi WX, Yu SL, Ma C, Sun N, Wang S, Jin LM, Sun LP (2011) Optimization of complex conditions by response surface methodology for APAM–oil/water emulsion removal from aqua solutions using nano-sized TiO2/Al2O3 PVDF ultrafiltration membrane. J Hazard Mater 193:37–44. https://doi.org/10.1016/j.jhazmat.2011.06.063

    Article  CAS  PubMed  Google Scholar 

  102. Yi XS, Yu SL, Shi WX, Wang S, Sun N, Jin LM, Ma C (2013) Estimation of fouling stages in separation of oil/water emulsion using nano-particles Al2O3/TiO2 modified PVDF UF membranes. Desalination 319:38–46. https://doi.org/10.1016/j.desal.2013.03.031

    Article  CAS  Google Scholar 

  103. Ju J, Wang T, Wang Q (2015) A facile approach in fabricating superhydrophobic and superoleophilic poly (vinylidene fluoride) membranes for efficient water-oil separation. J Appl Polym Sci 132(24):n/a. https://doi.org/10.1002/app.42077

  104. Li J, Guo S, Xu Z, Li J, Pan Z, Du Z, Cheng F (2019) Preparation of omniphobic PVDF membranes with silica nanoparticles for treating coking wastewater using direct contact membrane distillation: electrostatic adsorption vs. chemical bonding. J Membr Sci 574:349–357. https://doi.org/10.1016/j.memsci.2018.12.079

    Article  CAS  Google Scholar 

  105. Tang CY, Chong TH, Fane AG (2011) Colloidal interactions and fouling of NF and RO membranes: a review. Adv Coll Interface Sci 164(1–2):126–143. https://doi.org/10.1016/j.cis.2010.10.007

    Article  CAS  Google Scholar 

  106. Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R (2000) Photocatalysis in water environments using artificial and solar light. Catal Today 58(2–3):199–230. https://doi.org/10.1016/s0920-5861(00)00252-2

    Article  CAS  Google Scholar 

  107. Molinari R, Lavorato C, Argurio P (2017) Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds . A review. Catal Today 281:144–164. https://doi.org/10.1016/j.cattod.2016.06.047

    Article  CAS  Google Scholar 

  108. Ji Q, Yu X, Zhang J, Liu Y, Shang X, Qi X (2017) Photocatalytic degradation of diesel pollutants in seawater by using ZrO2 (Er3+)/TiO2 under visible light. J Environ Chem Eng 5(2):1423–1428. https://doi.org/10.1016/j.jece.2017.01.011

    Article  CAS  Google Scholar 

  109. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  110. Ziolli RL, Jardim WF (2002) Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2. J Photochem Photobiol A 147(3):205–212. https://doi.org/10.1016/s1010-6030(01)00600-1

    Article  CAS  Google Scholar 

  111. Biniaz P, Makarem MA, Rahimpour MR (2020) Membrane reactor. In: Catalyst immobilization: methods and applications, vol 1. KGaA Boschstr. 12, 69469. Wiley-VCH Verlag GmbH & Co, Weinheim, Germany, pp 307–324

    Google Scholar 

  112. Kho ET, Tan TH, Lovell E, Wong RJ, Scott J, Amal R (2017) A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ 2(3):204–217. https://doi.org/10.1016/j.gee.2017.06.003

    Article  Google Scholar 

  113. Li J, Ye Y, Ye L, Su F, Ma Z, Huang J, Xie H, Doronkin DE, Zimina A, Grunwaldt J-D, Zhou Y (2019) Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3−x. J Mater Chem A 7(6):2821–2830. https://doi.org/10.1039/c8ta10922b

    Article  CAS  Google Scholar 

  114. Xu J, Li X, Wu X, Wang W, Fan R, Liu X, Xu H (2016) Hierarchical CuO colloidosomes and their structure enhanced photothermal catalytic activity. J Phys Chem C 120(23):12666–12672. https://doi.org/10.1021/acs.jpcc.6b03750

    Article  CAS  Google Scholar 

  115. Gan Z, Wu X, Meng M, Zhu X, Yang L, Chu PK (2014) Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites. ACS Nano 8(9):9304–9310. https://doi.org/10.1021/nn503249c

    Article  CAS  PubMed  Google Scholar 

  116. Chin SS, Chiang K, Fane AG (2006) The stability of polymeric membranes in a TiO2 photocatalysis process. J Membr Sci 275(1–2):202–211. https://doi.org/10.1016/j.memsci.2005.09.033

    Article  CAS  Google Scholar 

  117. Wang Q, Cui J, Xie A, Lang J, Li C, Yan Y (2020) PVDF composite membrane with robust UV-induced self-cleaning performance for durable oil/water emulsions separation. J Taiwan Inst Chem Eng 110:130–139. https://doi.org/10.1016/j.jtice.2020.02.024

    Article  CAS  Google Scholar 

  118. Du X-D, Yi X-H, Wang P, Zheng W, Deng J, Wang C-C (2019) Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chem Eng J 356:393–399. https://doi.org/10.1016/j.cej.2018.09.084

    Article  CAS  Google Scholar 

  119. Liu L, Liu Z, Bai H, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46(4):1101–1112. https://doi.org/10.1016/j.watres.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  120. Li X, Janke A, Formanek P, Fery A, Stamm M, Tripathi BP (2018) One pot preparation of polysulfone-amino functionalized SiO2 nanoparticle ultrafiltration membranes for water purification. J Environ Chem Eng 6(4):4598–4604. https://doi.org/10.1016/j.jece.2018.06.045

    Article  CAS  Google Scholar 

  121. Matthews RW, McEvoy SR (1992) A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors. J Photochem Photobiol A 66(3):355–366. https://doi.org/10.1016/1010-6030(92)80008-j

    Article  CAS  Google Scholar 

  122. Gondal MA, Sadullah MS, Dastageer MA, McKinley GH, Panchanathan D, Varanasi KK (2014) Study of factors governing oil-water separation process using TiO2 films prepared by spray deposition of nanoparticle dispersions. ACS Appl Mater Interfaces 6(16):13422–13429. https://doi.org/10.1021/am501867b

    Article  CAS  PubMed  Google Scholar 

  123. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639–1657. https://doi.org/10.1007/s11434-011-4476-1

    Article  CAS  Google Scholar 

  124. Tan BYL, Tai MH, Juay J, Liu Z, Sun D (2015) A study on the performance of self-cleaning oil–water separation membrane formed by various TiO2 nanostructures. Sep Purif Technol 156:942–951. https://doi.org/10.1016/j.seppur.2015.09.060

    Article  CAS  Google Scholar 

  125. Moslehyani A, Ismail AF, Othman MHD, Matsuura T (2015) Design and performance study of hybrid photocatalytic reactor-PVDF/MWCNT nanocomposite membrane system for treatment of petroleum refinery wastewater. Desalination 363:99–111. https://doi.org/10.1016/j.desal.2015.01.044

    Article  CAS  Google Scholar 

  126. Reijnders L (2009) The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab 94(5):873–876. https://doi.org/10.1016/j.polymdegradstab.2009.02.005

    Article  CAS  Google Scholar 

  127. Bárdos E, Kovács G, Gyulavári T, Németh K, Kecsenovity E, Berki P, Baia L, Pap Z, Hernádi K (2017) Novel synthesis approaches for WO3-TiO2/MWCNT composite photocatalysts- problematic issues of photoactivity enhancement factors. Catalysis Today 300:28–38. https://doi.org/10.1016/j.cattod.2017.03.019

    Article  CAS  Google Scholar 

  128. Kovács G, Baia L, Vulpoi A, Radu T, Karácsonyi É, Dombi A, Hernádi K, Danciu V, Simon S, Pap Z (2014) TiO2/WO3/Au nanoarchitectures’ photocatalytic activity, “from degradation intermediates to catalysts’ structural peculiarities”, Part I: aeroxide P25 based composites. Appl Catal B 147:508–517. https://doi.org/10.1016/j.apcatb.2013.09.019

    Article  CAS  Google Scholar 

  129. Mishra A, Mehta A, Sharma M, Basu S (2017) Impact of Ag nanoparticles on photomineralization of chlorobenzene by TiO 2 /bentonite nanocomposite. J Environ Chem Eng 5(1):644–651. https://doi.org/10.1016/j.jece.2016.12.042

    Article  CAS  Google Scholar 

  130. Kalantari N, Vaezi MJ, Yadollahi M, Babaluo AA, Bayati B, Kazemzadeh A (2014) Synthesis of nanostructure hydroxy sodalite composite membranes via hydrothermal method: support surface modification and synthesis method effects. Asia-Pac J Chem Eng 10(1):45–55. https://doi.org/10.1002/apj.1844

    Article  CAS  Google Scholar 

  131. Dong S, Yu C, Li Y, Li Y, Sun J, Geng X (2014) Controlled synthesis of T-shaped BiVO4 and enhanced visible light responsive photocatalytic activity. J Solid State Chem 211:176–183. https://doi.org/10.1016/j.jssc.2013.12.027

    Article  CAS  Google Scholar 

  132. Pan M, Shan C, Zhang X, Zhang Y, Zhu C, Gao G, Pan B (2018) Environmentally friendly in situ regeneration of graphene aerogel as a model conductive adsorbent. Environ Sci Technol 52(2):739–746. https://doi.org/10.1021/acs.est.7b02795

    Article  CAS  PubMed  Google Scholar 

  133. Neghi N, Kumar M, Burkhalov D (2019) Synthesis and application of stable, reusable TiO2 polymeric composites for photocatalytic removal of metronidazole: removal kinetics and density functional analysis. Chem Eng J 359:963–975. https://doi.org/10.1016/j.cej.2018.11.090

    Article  CAS  Google Scholar 

  134. Wetchakun N, Chainet S, Phanichphant S, Wetchakun K (2015) Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram Int 41(4):5999–6004. https://doi.org/10.1016/j.ceramint.2015.01.040

    Article  CAS  Google Scholar 

  135. Xiao J-D, Jiang H-L (2019) Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res 52(2):356–366. https://doi.org/10.1021/acs.accounts.8b00521

    Article  CAS  PubMed  Google Scholar 

  136. Murić A, Petrinić I, Christensen ML (2014) Comparison of ceramic and polymeric ultrafiltration membranes for treating wastewater from metalworking industry. Chem Eng J 255:403–410. https://doi.org/10.1016/j.cej.2014.06.009

    Article  CAS  Google Scholar 

  137. Dickhout JM, Moreno J, Biesheuvel PM, Boels L, Lammertink RGH, de Vos WM (2017) Produced water treatment by membranes: a review from a colloidal perspective. J Colloid Interface Sci 487:523–534. https://doi.org/10.1016/j.jcis.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  138. Hofs B, Ogier J, Vries D, Beerendonk EF, Cornelissen ER (2011) Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep Purif Technol 79(3):365–374. https://doi.org/10.1016/j.seppur.2011.03.025

    Article  CAS  Google Scholar 

  139. Siagian UWR, Widodo S, Khoiruddin Wardani AK, Wenten IG (2018) Oilfield produced water reuse and reinjection with membrane. In: MATEC web of conferences, vol 156, 08005. https://doi.org/10.1051/matecconf/201815608005

  140. Jepsen K, Bram M, Pedersen S, Yang Z (2018) Membrane fouling for produced water treatment: a review study from a process control perspective. Water 10(7):847. https://doi.org/10.3390/w10070847

    Article  CAS  Google Scholar 

  141. Abbasi M, Sebzari MR, Salahi A, Mirza B (2012) Modeling of membrane fouling and flux decline in microfiltration of oily wastewater using ceramic membranes. Chem Eng Commun 199(1):78–93. https://doi.org/10.1080/00986445.2011.570391

    Article  CAS  Google Scholar 

  142. Zhou J, Wandera D, Husson SM (2015) Mechanisms and control of fouling during ultrafiltration of high strength wastewater without pretreatment. J Membr Sci 488:103–110. https://doi.org/10.1016/j.memsci.2015.04.018

    Article  CAS  Google Scholar 

  143. Dudchenko AV, Rolf J, Shi L, Olivas L, Duan W, Jassby D (2015) Coupling underwater superoleophobic membranes with magnetic pickering emulsions for fouling-free separation of crude oil/water mixtures: an experimental and theoretical study. ACS Nano 9:9930–9941. https://doi.org/10.1021/acsnano.5b04880

    Article  CAS  PubMed  Google Scholar 

  144. Li F, Yu Z, Shi H, Yang Q, Chen Q, Pan Y, Zeng G, Yan L (2017) A Mussel-inspired method to fabricate reduced graphene oxide/g-C 3 N 4 composites membranes for catalytic decomposition and oil-in-water emulsion separation. Chem Eng J 322:33–45. https://doi.org/10.1016/j.cej.2017.03.145

    Article  CAS  Google Scholar 

  145. Chen Q, Yu Z, Li F, Yang Y, Pan Y, Peng Y, Yang X, Zeng G (2018) A novel photocatalytic membrane decorated with RGO-Ag-TiO 2 for dye degradation and oil– water emulsion separation. J Chem Technol Biotechnol 93(3):761–775. https://doi.org/10.1002/jctb.5426

    Article  CAS  Google Scholar 

  146. Meng F, Chae S-R, Drews A, Kraume M, Shin H-S, Yang F (2008) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43(6):1489–1512. https://doi.org/10.1016/j.watres.2008.12.044

    Article  CAS  Google Scholar 

  147. Zare S, Kargari A (2018) Membrane properties in membrane distillation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815818-0.00004-7

  148. Kang G, Cao Y (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46(3):584–600. https://doi.org/10.1016/j.watres.2011.11.041

    Article  CAS  PubMed  Google Scholar 

  149. Zhao X, Su Y, Chen W, Peng J, Jiang Z (2012) Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. J Membr Sci 415–416:824–834. https://doi.org/10.1016/j.memsci.2012.05.075

    Article  CAS  Google Scholar 

  150. Bae T-H, Tak T-M (2005) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249(1–2):1–8. https://doi.org/10.1016/j.memsci.2004.09.008

    Article  CAS  Google Scholar 

  151. Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes—state of their development and perspective. Microporous Mesoporous Mater 38(1):3–24. https://doi.org/10.1016/s1387-1811(99)00295-4

    Article  CAS  Google Scholar 

  152. Gondal MA, Sadullah MS, Qahtan TF, Dastageer MA, Baig U, McKinley GH (2017) Fabrication and wettability study of WO3 coated photocatalytic membrane for oil-water separation: a comparative study with ZnO coated membrane. Sci Rep 7(1):na. https://doi.org/10.1038/s41598-017-01959-y

  153. Helali N, Rastgar M, Farhad Ismail M, Sadrzadeh M (2019) Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation. Sep Purif Technol 238:116451. https://doi.org/10.1016/j.seppur.2019.116451

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, Z.Z. et al. (2022). Nanoenhanced Photocatalytic Approach for Separation of Oily Emulsion from Aqueous Effluents: Recent Trends, Future Perspective and Challenges. In: Garg, S., Chandra, A. (eds) Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-77371-7_19

Download citation

Publish with us

Policies and ethics