Skip to main content

The Role of Chromatographic and Electromigration Techniques in Foodomics

  • Chapter
  • First Online:
Separation Techniques Applied to Omics Sciences

Abstract

Foodomics is the discipline aimed at studying the prevention of diseases by food, identifying chemical, biological and biochemical food contaminants, determining changes in genetically modified foods, identifying biomarkers able to confirm the authenticity and quality of foods or studying the safety, quality and traceability of foods, among other issues. It is mainly based on the use of genomic, transcriptomic, proteomic and metabolomic tools, among others, in order to understand the effect of food on animals and humans at the level of genes, messenger ribonucleic acid, proteins and metabolites. Since the first definition of Foodomics, a reasonable number of works have shown the extremely high possibilities of this discipline, which is highly based on the use of advanced analytical hyphenated techniques – especially for proteomics and metabolomics. This book chapter aims at providing a general description of the role of chromatographic and electromigration techniques that are currently being applied to achieve the main objectives of Foodomics, particularly in the proteomic and metabolomic fields, since most published works have been focused on these approaches, and to highlight relevant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

ACN:

Acetonitrile

C18:

Octadecylsilane

CE:

Capillary electrophoresis

CSIC:

National Research Council of Spain

DAD:

Diode array detector

ddPCR:

Droplet digital polymerase chain reaction

DNA:

Deoxyribonucleic acid

EOF:

Electroosmotic flow

ESI:

Electrospray ionization

FT:

Fourier transform

GC:

Gas chromatography

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-performance liquid chromatography

HRM:

High-resolution melting

HS-SPME:

Headspace solid-phase microextraction

ICR:

Ion cyclotron resonance

IT:

Ion trap

LAMP:

Loop-mediated isothermal amplification

LC:

Liquid chromatography

LCxLC:

Two-dimensional liquid chromatography

m/z:

Mass/charge ratio

MALDI:

Matrix-assisted laser desorption ionization

miRNA:

Micro-ribonucleic acid

mRNA:

Messenger ribonucleic acid

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NMR:

Nuclear magnetic resonance

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

PTM:

Posttranslational modification

Q:

Quadrupole

QqQ:

Triple quadrupole

RNA:

Ribonucleic acid

rRNA:

Ribosomal ribonucleic acid

SDS:

Sodium dodecyl sulphate

TOF:

Time-of-flight

tRNA:

Transfer ribonucleic acid

UHPLC:

Ultra high-performance liquid chromatography

References

  1. Cifuentes A (2009) Food analysis and Foodomics. J Chromatogr A 1216(43):7109. Available from: https://www.sciencedirect.com/science/article/pii/S0021967309013545?via%3Dihub

    Article  CAS  PubMed  Google Scholar 

  2. Herrero M, García-Cañas V, Simo C, Cifuentes A (2010) Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 31(1):205–228. Available from: https://doi.org/10.1002/elps.200900365

    Article  CAS  PubMed  Google Scholar 

  3. Herrero M, Simõ C, García-Cañas V, Ibáñez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49–69

    Article  CAS  PubMed  Google Scholar 

  4. García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A (2012) Present and future challenges in food analysis: Foodomics. Anal Chem 84(23):10150–10159. Available from: https://doi.org/10.1021/ac301680q

    Article  PubMed  CAS  Google Scholar 

  5. Ferranti P (2018) The future of analytical chemistry in Foodomics. Curr Opin Food Sci 22:102–108. Available from: https://www.sciencedirect.com/science/article/pii/S221479931730098X

    Article  Google Scholar 

  6. Gallo M, Ferranti P (2016) The evolution of analytical chemistry methods in Foodomics. J Chromatogr A 1428:3–15. Available from: https://www.sciencedirect.com/science/article/pii/S0021967315012728

    Article  CAS  PubMed  Google Scholar 

  7. Rychlik M, Kanawati B, Schmitt-Kopplin P (2017) Foodomics as a promising tool to investigate the mycobolome. TrAC Trends Anal Chem 96:22–30. Available from: https://www.sciencedirect.com/science/article/pii/S016599361730095X

    Article  CAS  Google Scholar 

  8. Martinović T, Šrajer Gajdošik M, Josić D (2018) Sample preparation in foodomic analyses. Electrophoresis 39:1527–1542

    Article  PubMed  CAS  Google Scholar 

  9. Pimentel G, Burton KJ, Vergères G, Dupont D (2018) The role of Foodomics to understand the digestion/bioactivity relationship of food. Curr Opin Food Sci 22:67–73. Available from: https://www.sciencedirect.com/science/article/pii/S2214799317300826

    Article  Google Scholar 

  10. Ibáñez C, Simó C, García-Cañas V, Acunha T, Cifuentes A (2015) The role of direct high-resolution mass spectrometry in Foodomics. Anal Bioanal Chem 407(21):6275–6287. Available from: https://doi.org/10.1007/s00216-015-8812-1

    Article  PubMed  CAS  Google Scholar 

  11. Ibáñez C, Simó C, García-Cañas V, Cifuentes A, Castro-Puyana M (2013) Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: a review. Anal Chim Acta 802:1–13. Available from: https://www.sciencedirect.com/science/article/pii/S0003267013009884?via%3Dihub

    Article  PubMed  CAS  Google Scholar 

  12. Cifuentes A (2017) Special issue on Foodomics and modern food analysis. TrAC Trends Anal Chem 96:1–212

    Article  CAS  Google Scholar 

  13. Cifuentes A (2013) Foodomics: advanced mass spectrometry in modern food science and nutrition. Wiley-VCH Verlag, Hoboken

    Book  Google Scholar 

  14. McGorrin RJ (2009) One hundred years of progress in food analysis. J Agric Food Chem 57(18):8076–8088. Available from: https://doi.org/10.1021/jf900189s

    Article  CAS  PubMed  Google Scholar 

  15. Cacciola F, Dugo P, Mondello L (2017) Multidimensional liquid chromatography in food analysis. TrAC Trends Anal Chem 96:116–123. Available from: https://www.sciencedirect.com/science/article/pii/S016599361730078X

    Article  CAS  Google Scholar 

  16. Nolvachai Y, Kulsing C, Marriott PJ (2017) Multidimensional gas chromatography in food analysis. TrAC Trends Anal Chem 96:124–137. Available from: https://www.sciencedirect.com/science/article/pii/S0165993617300973

    Article  CAS  Google Scholar 

  17. Herrero M, Ibáñez E, Cifuentes A, Bernal J (2009) Multidimensional chromatography in food analysis. J Chromatogr A 1216(43):7110–7129. Available from: https://www.sciencedirect.com/science/article/pii/S0021967309011947?via%3Dihub

    Article  CAS  PubMed  Google Scholar 

  18. Nelson D, Cox M (2013) Lehninger principles of biochemistry, Fifth edn.

    Google Scholar 

  19. Gallardo JM, Carrera M, Ortea I (2013) Proteomics in food science. In: Foodomics. Wiley Online Books, New Jersey, pp 125–165. Available from: https://doi.org/10.1002/9781118537282.ch5

  20. Valdés A, León C (2017) Foodomics evaluation of bioactive compounds in foods. TrAC Trends Anal Chem 96:2–13. Available from: https://www.sciencedirect.com/science/article/pii/S0165993617301541?via%3Dihub

    Article  CAS  Google Scholar 

  21. Picariello G, Mamone G, Addeo F, Ferranti P (2012) Novel mass spectrometry-based applications of the “omic”: sciences in food technology and biotechnology. Food Technol Biotechnol 50(3):286–305

    CAS  Google Scholar 

  22. Luthria DL, Maria John KM, Marupaka R, Natarajan S (2018) Recent update on methodologies for extraction and analysis of soybean seed proteins. J Sci Food Agric 98:5572–5580

    Article  CAS  PubMed  Google Scholar 

  23. Gilbert-López B, Mendiola JA, Ibáñez E (2017) Green Foodomics. Towards a cleaner scientific discipline. TrAC Trends Anal Chem 96:31–41. Available from: https://www.sciencedirect.com/science/article/pii/S0165993617301474?via%3Dihub#bib15

    Article  CAS  Google Scholar 

  24. Mena MC, Albar JP (2013) Next generation instruments and methods for proteomics. In: Foodomics: advanced mass spectrometry in modern food science and nutrition. Wiley-VCH Verlag, Hoboken, pp 15–67

    Chapter  Google Scholar 

  25. Emy GL, León C, Marina ML, Cifuentes A (2008) Time of flight versus ion trap MS coupled to CE to analyse intact proteins. J Sep Sci 31:1810–1818

    Article  CAS  Google Scholar 

  26. Simó C, Domínguez-Vega E, Marina ML, García MC, Dinelli G, Cifuentes A (2010) CE-TOF MS analysis of complex protein hydrolyzates from genetically modified soybeans – a tool for Foodomics. Electrophoresis 31:1175–1183

    Article  PubMed  CAS  Google Scholar 

  27. Brandão AR, Barbosa HS, Arruda MAZ (2010) Image analysis of two-dimensional gel electrophoresis for comparative proteomics of transgenic and non-transgenic soybean seeds. J Proteomics 73(8):1433–1440. Available from: https://www.sciencedirect.com/science/article/pii/S187439191000028X?via%3Dihub#aep-section-id24

    Article  PubMed  CAS  Google Scholar 

  28. Donato P, Cacciola F, Sommella E, Fanali C, Dugo L, Dachà M et al (2011) Online comprehensive RPLC × RPLC with mass spectrometry detection for the analysis of proteome samples. Anal Chem 83(7):2485–2491. Available from: https://doi.org/10.1021/ac102656b

    Article  CAS  PubMed  Google Scholar 

  29. Picariello G, Ferranti P, Mamone G, Klouckova I, Mechref Y, Novotny MV et al (2012) Gel-free shotgun proteomic analysis of human milk. J Chromatogr A 1227:219–233. Available from: https://www.sciencedirect.com/science/article/pii/S0021967312000775?via%3Dihub#fig 0005

    Article  CAS  PubMed  Google Scholar 

  30. Valdés A, Artemenko KA, Bergquist J, García-Cañas V, Cifuentes A (2016) Comprehensive proteomic study of the antiproliferative activity of a polyphenol-enriched rosemary extract on colon cancer cells using nanoliquid chromatography-Orbitrap MS/MS. J Proteome Res 15(6):1971–1985

    Article  PubMed  CAS  Google Scholar 

  31. Nardiello D, Natale A, Palermo C, Quinto M, Centonze D (2017) Combined use of peptide ion and normalized delta scores to evaluate milk authenticity by ion-trap based proteomics coupled with error tolerant searching. Talanta 164:684–692. Available from: https://www.sciencedirect.com/science/article/pii/S0039914016308578?via%3Dihub#s0010

    Article  CAS  PubMed  Google Scholar 

  32. Valdés A, García-Cañas V, Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, Artemenko KA et al (2017) Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment. J Chromatogr A 1499:90–100. Available from: https://www.sciencedirect.com/science/article/pii/S002196731730482X?via%3Dihub#bib0085

    Article  PubMed  CAS  Google Scholar 

  33. Zhang Y, Fonslow BR, Shan B, Baek M-C, Yates JR (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  PubMed  Google Scholar 

  35. Wehr T (2006) Top-down versus bottom-up approaches in proteomics. LCGC N Am 24(9):1004–1010

    CAS  Google Scholar 

  36. Han G, Ye M, Zhou H, Jiang X, Feng S, Jiang X et al (2008) Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics 8(7):1346–1361. Available from: https://doi.org/10.1002/pmic.200700884

    Article  CAS  PubMed  Google Scholar 

  37. Han X, Aslanian A, Yates JR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12(5):483–490. Available from: https://www.sciencedirect.com/science/article/pii/S1367593108001178#fig 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huhn C, Ramautar R, Wuhrer M, Somsen GW (2010) Relevance and use of capillary coatings in capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 396(1):297–314

    Article  CAS  PubMed  Google Scholar 

  39. Crameri R (2005) The potential of proteomics and peptidomics for allergy and asthma research. Allergy 60(10):1227–1237. Available from: https://doi.org/10.1111/j.1398-9995.2005.00873.x

    Article  CAS  PubMed  Google Scholar 

  40. Gilbert-López B, Valdés A, Acunha T, García-Cañas V, Simó C, Cifuentes A (2017) Foodomics: LC and LC-MS-based omics strategies in food science and nutrition. Liq Chromatogr:267–299. Available from: https://www.sciencedirect.com/science/article/pii/B9780128053928000104

  41. Belinato JR, Dias FFG, Caliman JD, Augusto F, Hantao LW (2018) Opportunities for green microextractions in comprehensive two-dimensional gas chromatography/mass spectrometry-based metabolomics – a review. Anal Chim Acta 1040:1–18. Available from: https://www.sciencedirect.com/science/article/pii/S0003267018310006?via%3Dihub

    Article  PubMed  CAS  Google Scholar 

  42. León C, Cifuentes A, Valdés A (2018) Foodomics applications. Compr Anal Chem 82:643–685. Available from: https://www.sciencedirect.com/science/article/pii/S0166526X18300643

    Article  CAS  Google Scholar 

  43. Ibáñez C, Simó C (2013) MS-based metabolomics in nutrition and health research. In: Foodomics. Wiley Online Books, pp 245–270. Available from: https://doi.org/10.1002/9781118537282.ch9

    Chapter  Google Scholar 

  44. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78. Available from: https://doi.org/10.1002/mas.20108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tomita S, Nakamura T, Okada S (2018) NMR- and GC/MS-based metabolomic characterization of sunki, an unsalted fermented pickle of turnip leaves. Food Chem 258:25–34. Available from: https://www.sciencedirect.com/science/article/pii/S0308814618304680#f0005

    Article  CAS  PubMed  Google Scholar 

  46. Rocchetti G, Lucini L, Gallo A, Masoero F, Trevisan M, Giuberti G (2018) Untargeted metabolomics reveals differences in chemical fingerprints between PDO and non-PDO Grana Padano cheeses. Food Res Int 113:407–413. Available from: https://www.sciencedirect.com/science/article/pii/S0963996918305672

    Article  CAS  PubMed  Google Scholar 

  47. Wu H, Huang W, Chen Z, Chen Z, Shi J, Kong Q et al (2019) GC–MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food Res Int 120:330–338. Available from: https://www.sciencedirect.com/science/article/pii/S0963996919301243

    Article  CAS  PubMed  Google Scholar 

  48. Levandi T, Leon C, Kaljurand M, Garcia-Cañas V, Cifuentes A (2008) Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Anal Chem 80(16):6329–6335. Available from: https://doi.org/10.1021/ac8006329

    Article  CAS  PubMed  Google Scholar 

  49. Montero L, Ibáñez E, Russo M, di Sanzo R, Rastrelli L, Piccinelli AL et al (2016) Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection. Anal Chim Acta 913:145–159. Available from: https://www.sciencedirect.com/science/article/pii/S0003267016301283

    Article  CAS  PubMed  Google Scholar 

  50. Valdés A, Simó C, Ibáñez C, García-Cañas V (2013) Foodomics strategies for the analysis of transgenic foods. TrAC Trends Anal Chem 52:2–15. Available from: https://www.sciencedirect.com/science/article/pii/S0165993613001945#s0025

    Article  CAS  Google Scholar 

  51. Álvarez G, Montero L, Llorens L, Castro-Puyana M, Cifuentes A (2018) Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 39(1):136–159. Available from: https://doi.org/10.1002/elps.201700321

    Article  PubMed  CAS  Google Scholar 

  52. Wang J, Wang C, Han X (2019) Tutorial on lipidomics. Anal Chim Acta 1061:28–41. Available from: https://www.sciencedirect.com/science/article/pii/S000326701930128X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hyötyläinen T, Bondia-Pons I, Orešič M (2013) Lipidomics in nutrition and food research. Mol Nutr Food Res 57(8):1306–1318. Available from: https://doi.org/10.1002/mnfr.201200759

    Article  PubMed  CAS  Google Scholar 

  54. Chen H, Wei F, Dong X, Xiang J, Quek S, Wang X (2017) Lipidomics in food science. Curr Opin Food Sci 16:80–87. Available from: https://www.sciencedirect.com/science/article/pii/S2214799317300590?via%3Dihub#sec0015

    Article  Google Scholar 

  55. Walczak J, Pomastowski P, Buszewski B (2016) Food quality control by hyphenated separation techniques. Heal Probl Civiliz 1(9):33–38

    Google Scholar 

  56. Andjelković U, Šrajer Gajdošik M, Gašo-Sokač D, Martinović T, Josić D (2017) Foodomics and food safety: where we are. Food Technol Biotechnol 55(3):290–307. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29089845

    Article  PubMed  PubMed Central  Google Scholar 

  57. Moura-Melo S, Miranda-Castro R, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Dos Santos Junior JR, da Silva Fonseca RA et al (2015) Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms. Anal Chem 87(16):8547–8554. Available from: https://doi.org/10.1021/acs.analchem.5b02271

    Article  CAS  PubMed  Google Scholar 

  58. Creydt M, Fischer M (2018) Omics approaches for food authentication. Electrophoresis 39(13):1569–1581. Available from: https://doi.org/10.1002/elps.201800004

    Article  CAS  PubMed  Google Scholar 

  59. Agrimonti C, Vietina M, Pafundo S, Marmiroli N (2011) The use of food genomics to ensure the traceability of olive oil. Trends Food Sci Technol 22(5):237–244. Available from: https://www.sciencedirect.com/science/article/pii/S092422441100029X

    Article  CAS  Google Scholar 

  60. Kumar S, Kahlon T, Chaudhary S (2011) A rapid screening for adulterants in olive oil using DNA barcodes. Food Chem 127(3):1335–1341. Available from: https://www.sciencedirect.com/science/article/pii/S0308814611001981

    Article  CAS  PubMed  Google Scholar 

  61. Uncu AT, Uncu AO, Frary A, Doganlar S (2017) Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Food Chem 221:1026–1033. Available from: https://www.sciencedirect.com/science/article/pii/S0308814616318970?via%3Dihub

    Article  CAS  PubMed  Google Scholar 

  62. Spaniolas S, Bazakos C, Spano T, Zoghby C, Kalaitzis P (2010) The potential of plastid trnL (UAA) intron polymorphisms for the identification of the botanical origin of plant oils. Food Chem 122(3):850–856. Available from: https://www.sciencedirect.com/science/article/pii/S0308814610002232

    Article  CAS  Google Scholar 

  63. Spaniolas S, Bazakos C, Awad M, Kalaitzis P (2008) Exploitation of the chloroplast trnL (UAA) intron polymorphisms for the authentication of plant oils by means of a lab-on-a-chip capillary electrophoresis system. J Agric Food Chem 56(16):6886–6891. Available from: https://doi.org/10.1021/jf8008926

    Article  CAS  PubMed  Google Scholar 

  64. Mayer HK (2005) Milk species identification in cheese varieties using electrophoretic, chromatographic and PCR techniques. Int Dairy J 15(6–9):595–604. Available from: https://www.sciencedirect.com/science/article/pii/S0958694604003176

    Article  CAS  Google Scholar 

  65. Böhme K, Calo-Mata P, Barros-Velázquez J, Ortea I (2019) Recent applications of omics-based technologies to main topics in food authentication. TrAC Trends Anal Chem 110:221–232. Available from: https://www.sciencedirect.com/science/article/pii/S0165993618303625

    Article  CAS  Google Scholar 

  66. Das M, Haberer G, Panda A, Das Laha S, Ghosh TC, Schäffner AR (2016) Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events. Plant Physiol 171(4):2343–2357. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27303025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Riedmaier I, Becker C, Pfaffl MW, Meyer HHD (2009) The use of omic technologies for biomarker development to trace functions of anabolic agents. J Chromatogr A 1216(46):8192–8199. Available from: https://www.sciencedirect.com/science/article/pii/S0021967309001952

    Article  CAS  PubMed  Google Scholar 

  68. Lodha TD, Basak J (2012) Plant–pathogen interactions: what microarray tells about it? Mol Biotechnol 50(1):87–97. Available from: https://doi.org/10.1007/s12033-011-9418-2

    Article  CAS  PubMed  Google Scholar 

  69. Annadurai RS, Neethiraj R, Jayakumar V, Damodaran AC, Rao SN, Katta MAVSK et al (2013) De novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids. PLoS One 8(2):e56217. Available from: https://dx.plos.org/10.1371/journal.pone.0056217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49(7):521–532. Available from: https://www.sciencedirect.com/science/article/pii/S1087184512000989

    Article  CAS  PubMed  Google Scholar 

  71. Tirumalai PS (2011) Expression of chitinase and chitin binding proteins (CBP’s) by Listeria monocytogenes J0161 in biofilm and co-culture broths. Afr J Microbiol Res 5(29):5188–5193

    CAS  Google Scholar 

  72. Corujo M, Pla M, van Dijk J, Voorhuijzen M, Staats M, Slot M et al (2019) Use of omics analytical methods in the study of genetically modified maize varieties tested in 90 days feeding trials. Food Chem 292:359–371. Available from: https://www.sciencedirect.com/science/article/pii/S0308814618309300

    Article  CAS  PubMed  Google Scholar 

  73. Trachtenberg AJ, Robert J-H, Abdalla AE, Fraser A, He SY, Lacy JN et al (2012) A primer on the current state of microarray technologies BT – next generation microarray bioinformatics: methods and protocols. In: Wang J, Tan AC, Tian T (eds) . Humana Press, Totowa, pp 3–17. Available from: https://doi.org/10.1007/978-1-61779-400-1_1

    Chapter  Google Scholar 

  74. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. Available from: https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Valdés A, Simó C, Ibáñez C, Rocamora-Reverte L, Ferragut JA, García-Cañas V et al (2012) Effect of dietary polyphenols on K562 leukemia cells: a Foodomics approach. Electrophoresis 33(15):2314–2327. Available from: https://doi.org/10.1002/elps.201200133

    Article  PubMed  CAS  Google Scholar 

  76. Ibáñez C, Valdés A, García-Cañas V, Simó C, Celebier M, Rocamora-Reverte L et al (2012) Global Foodomics strategy to investigate the health benefits of dietary constituents. J Chromatogr A 1248:139–153. Available from: https://www.sciencedirect.com/science/article/pii/S0021967312008746

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J.G.S. would like to thank “Cabildo de Tenerife” for the Agustín de Betancourt contract at the Universidad de La Laguna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Hernández-Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Sálamo, J., Varela-Martínez, D.A., González-Curbelo, M.Á., Hernández-Borges, J. (2021). The Role of Chromatographic and Electromigration Techniques in Foodomics. In: Colnaghi Simionato, A.V. (eds) Separation Techniques Applied to Omics Sciences. Advances in Experimental Medicine and Biology(), vol 1336. Springer, Cham. https://doi.org/10.1007/978-3-030-77252-9_3

Download citation

Publish with us

Policies and ethics