Skip to main content

A Stress–Dependent Approach for Estimation of Drum–Soil Contact Area

  • Conference paper
  • First Online:
Book cover Advances in Transportation Geotechnics IV

Abstract

The conventional method of estimating the contact area of compaction rollers is based on simplifying assumptions such as the homogeneous and linear elastic behavior of the underlying compacted geomaterials. This study evaluates a stress-dependent approach for estimating the contact area of roller compaction considering the nonlinear behavior of compacted geomaterials. For this purpose, a finite element model was developed to simulate the roller compaction of unbound materials considering both the nonlinear behavior of geomaterials and the soil–drum interaction by means of using advanced contact algorithms. The contact area of the drum was estimated based on the stress distribution at the soil–drum interface for more representative pavement responses than those obtained from Hertzian models. The contact areas from this approach showed good agreement with those measured in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mooney MA, Rinehart RV (2009) In situ soil response to vibratory loading and its relationship to roller-measured soil stiffness. J Geotech Geoenviron Eng Am Soc Civ Eng 135(8):1022–1031

    Article  Google Scholar 

  2. Rinehart R, Berger J, Mooney M (2009) Comparison of stress states and paths: vibratory roller-measured soil stiffness and resilient modulus testing. Transp Res Record: J Transp Res Board, Transp Res Board Natl Acad 2116:8–15

    Article  Google Scholar 

  3. Yoo T-S, Selig ET (1979) Dynamics of vibratory-roller compaction. J Geotech Eng Divis ASCE 105(10):1211–1231

    Article  Google Scholar 

  4. Van Susante PJ, Mooney MA (2008) Capturing nonlinear vibratory roller compactor behavior through lumped parameter modeling. J Eng Mech 134(8):684–693

    Article  Google Scholar 

  5. Hertz HR (1882) Ueber die Berührung fester elastischer Körper (On the contact between elastic bodies). J für die reine angewandte Mathematik 1882(92):156–171

    Article  Google Scholar 

  6. Adam D, Kopf F (2004) Operational devices for compaction optimization and quality control (Continuous compaction control & light falling weight device). In: International Seminar on Geotechnic Pavement and Railway Design and Construction, Millpress, Rotterdam, The Netherlands, Athens, Greece, pp 97–106

    Google Scholar 

  7. Anderegg R, Kaufmann K (2004) Intelligent compaction with vibratory rollers: feedback control systems in automatic compaction and compaction control. Transp Res Record: J Transp Res Board, Transp Res Board Natl Acad 1868:124–134

    Article  Google Scholar 

  8. Mooney MA, Rinehart RV, van Susante PJ (2006) The influence of heterogeneity on vibratory roller compactor response. In: DeGroot DJ, DeJong JT, Frost D, Baise LG (eds) GeoCongress 2006: geotechnical engineering in the information technology age. American Society of Civil Engineers, Atlanta GA, pp 1–6

    Google Scholar 

  9. Quibel A (1980) Le comportement vibratoire: Trait d’union entre le choix des parameters et l’efficacite des rouleaux vibrants (The vibratory behavior: interactions between vibration parameters and the effectiveness of vibratory rollers). In: Colloque International sur le Compactage (International conference on compaction, Session VII Compaction Equipment), ENPC, LCPC, Paris, pp 671–676

    Google Scholar 

  10. Kröber W (1988) Untersuchung der Dynamischen Vorgäge bei der Vibrationsverdichtung von Böden (Analysis of dynamic operation during the vibrational compaction of soil). Technischen Universität

    Google Scholar 

  11. Kopf F, Erdmann P (2005) Numerische Untersuchungen der Flächendeckenden Dynamischen Verdichtungskontrolle FDVK (Numerical analysis of continuous compaction control). Osterreichische Ingenius Architekten Zeitschrift (OIAZ) 150(4–5):126–143

    Google Scholar 

  12. Kargl G (1995) Modellversuche zur Ermittlung des Last-Deformationsverhaltens geschichteter Modellböden unter ebenen und zylindrisch gekrümmten Belastungsflächen und vergleichende Computerberechnungen. Technische Universität Wien

    Google Scholar 

  13. Pistrol J (2016) Compaction with oscillating rollers (Doctoral thesis). Vienna University of Technology, Vienna. Thurner H, Sandström Å (n.d.) Continuous compaction control, CCC. In: Proceedings of the international conference on compaction, Paris, pp 237–245

    Google Scholar 

  14. Herrera C, Costa PA, Caicedo B (2018) Numerical modelling and inverse analysis of continuous compaction control. Transp Geotech 17:165–177

    Article  Google Scholar 

  15. Musimbi OM, Rinehart RV, Mooney MA (2010) Comparison of measured and BEM computed contact area between roller drum and layered soil. In: Fratta DO, Puppala AJ, Muhunthan B (eds) GeoFlorida 2010: Advances in analysis, modeling & design (GSP 199). ASCE, West Palm Beach, FL, pp 2444–2453

    Google Scholar 

  16. Asaf Z, Shmulevich I, Rubinstein D (2006) Predicting soil-rigid wheel performance using distinct element methods. Trans Am Soc Agric Biol Eng 49(3):607–616

    Google Scholar 

  17. Buechler SR, Mustoe GGW, Berger JR, Mooney MA (2012) Understanding the soil contact problem for the LWD and static drum roller by using the DEM. J Eng Mech Am Soc Civ Eng 138(1):124–132

    Article  Google Scholar 

  18. Mooney MA, Facas NW (2013) Extraction of layer properties from intelligent compaction data. Final Report for NCHRP Highway IDEA Project 145, Transportation Research Board of the National Academies, Washington, DC

    Google Scholar 

  19. Patrick J, Werkmeister S (2010) Compaction of thick granular layers, NZ Transport Agency Research Report No. 411. NZ Transport Agency Research Report 411, New Zealand Transport Agency, Wellington, NZ

    Google Scholar 

  20. Xia K, Pan T (2010) Understanding vibratory asphalt compaction by numerical simulation. Int J Pavement Res Technol 4(3):185–194

    Google Scholar 

  21. Hügel HM, Henke S, Kinzler S (2008) High-performance ABAQUS simulations in soil mechanics. In: 2008 ABAQUS users’ conference, Newport, RI, pp 1–15

    Google Scholar 

  22. Wang L, Zhang B, Wang D, Yue Z (2007) Fundamental mechanics of asphalt compaction through FEM and DEM modeling. In: Wang L, Masad E (eds) Analysis of asphalt pavement materials and systems analysis: engineering methods, GSP 176. American Society of Civil Engineers, Boulder CO, pp 45–63

    Google Scholar 

  23. Carrasco C, Tirado C, Wang H (2014) Numerical simulation of intelligent compaction technology for construction quality control. CAIT-UTC 029 Report, El Paso, TX

    Google Scholar 

  24. Fathi A (2020) Extracting mechanical properties of compacted geomaterials using intelligent compaction technology. Doctoral dissertation, The University of Texas, El Paso

    Google Scholar 

  25. Nazarian S, Fathi A, Tirado C, Kreinovich V, Rocha S, Mazari M (2020) Evaluating mechanical properties of earth material during intelligent compaction. NCHRP Research Report, 933

    Google Scholar 

  26. Ooi PS, Archilla AR, Sandefur KG (2004) Resilient modulus models for compacted cohesive soils. Transp Res Rec 1874(1):115–124

    Article  Google Scholar 

  27. Velasquez R, Hoegh K, Yut I, Funk N, Cochran G, Marasteanu M, Khazanovich L (2009) Implementation of the MEPDG for new and rehabilitated pavement structures for design of concrete and asphalt pavements in Minnesota. MnDOT Research Report MN/RC 2009–06. University of Minnesota, Minneapolis, MN

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Cooperative Highway Research Program (NCHRP) for funding this study. The contents of this paper reflect the authors’ opinions, not necessarily the policies and findings of NCHRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aria Fathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fathi, A., Tirado, C., Rocha, S., Mazari, M., Nazarian, S. (2022). A Stress–Dependent Approach for Estimation of Drum–Soil Contact Area. In: Tutumluer, E., Nazarian, S., Al-Qadi, I., Qamhia, I.I. (eds) Advances in Transportation Geotechnics IV. Lecture Notes in Civil Engineering, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-030-77238-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77238-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77237-6

  • Online ISBN: 978-3-030-77238-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics