A Topological Data Analysis Mapper of the Ovarian Folliculogenesis Based on MALDI Mass Spectrometry Imaging Proteomics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12721)


Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI), also referred to as molecular histology, is an emerging omics, which allows the simultaneous, label-free, detection of thousands of peptides in their tissue localization, and generates highly dimensional data. This technology requires the development of advanced computational methods to deepen our knowledge on relevant biological processes, such as those involved in reproductive biology.

The mammalian ovary cyclically undergoes morpho-functional changes. From puberty, at each ovarian cycle, a group of pre-antral follicles (type 4, T4) is recruited and grows to the pre-ovulatory (T8) stage, until ovulation of mature oocytes. The correct follicle growth and acquisition of oocyte developmental competence are strictly related to a continuous, but still poorly understood, molecular crosstalk between the gamete and the surrounding follicle cells.

Here, we tested the use of advanced clustering and visual analytics approaches on MALDI-MSI data for the in-situ identification of the protein signature of growing follicles, from the pre-antral T4 to the pre-ovulatory T8. Specifically, we first analyzed follicles MALDI-MSI data with PCA, tSNE and UMAP approaches, and then we developed a framework that employs Topological Data Analysis (TDA) Mapper to detect spatial and temporal related clusters and to pinpoint differentially expressed proteins. TDA Mapper is an unsupervised Machine Learning method suited to the analysis of high-dimensional data that are embedded into a graph model. Interestingly, the graph structure revealed protein patterns in clusters containing different follicle types, highlighting putative factors that drive follicle growth.


Topological Data Analysis Histology MALDI-MSI 


  1. 1.
    Alexandrov, T.: MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinform. 13, S11 (2012)CrossRefGoogle Scholar
  2. 2.
    McCombie, G., et al.: Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Anal. Chem. 77, 6118–6124 (2005)CrossRefGoogle Scholar
  3. 3.
    Behrmann, J., et al.: Deep learning for tumor classification in imaging mass spectrometry. Bioinforma. Oxf. Engl. 34, 1215–1223 (2018)CrossRefGoogle Scholar
  4. 4.
    Lagarrigue, M., et al.: Matrix-assisted laser desorption/ionization imaging mass spectrometry: a promising technique for reproductive research. Biol. Reprod. 86 (2012)Google Scholar
  5. 5.
    Pedersen, T., Peters, H.: Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 17, 555–557 (1968)CrossRefGoogle Scholar
  6. 6.
    Zuccotti, M., et al.: What does it take to make a developmentally competent mammalian egg? Hum. Reprod. Update 17, 525–40 (2011)CrossRefGoogle Scholar
  7. 7.
    Li, L., et al.: Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7, 311ra174 (2015)Google Scholar
  8. 8.
    Patania, A., et al.: Topological analysis of data. EPJ Data Sci. 6, 1–6 (2017)CrossRefGoogle Scholar
  9. 9.
    Clauset, A., et al.: Finding community structure in very large networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066111 (2005)Google Scholar
  10. 10.
    McGinnis, L.K., Kinsey, W.H.: Role of focal adhesion kinase in oocyte-follicle communication. Mol. Reprod. Dev. 82, 90–102 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  2. 2.Department of Biology and Biotechnology “Lazzaro Spallanzani”University of PaviaPaviaItaly
  3. 3.Department of Medicine and SurgeryUniversity of Milano-BicoccaVedano al LambroItaly

Personalised recommendations