Birn, R.M.: The role of physiological noise in resting-state functional connectivity. Neuroimage (2012)
Google Scholar
Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: Bidirectional recurrent imputation for time series. In: NIPS, Brits (2018)
Google Scholar
Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Scientific reports (2018)
Google Scholar
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv (2014)
Google Scholar
Conroy, B.R., Walz, J.M., Sajda, P.: Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fMRI decoding models. PLoS ONE (2013)
Google Scholar
Deligianni, F., Carmichael, D.W., Zhang, G.H., Clark, C.A., Clayden, J.D.: Noddi and tensor-based microstructural indices as predictors of functional connectivity. PLoS ONE (2016)
Google Scholar
Deligianni, F., Centeno, M., Carmichael, D.W., Clayden, J.D.: Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands. Front. Neurosci. (2014)
Google Scholar
Fortuin, V., Baranchuk, D., Rätsch, G., Mandt, S.: GP-VAE: deep probabilistic time series imputation. arXiv (2019)
Google Scholar
Goodfellow, I., et al.: Generative adversarial nets. In NIPS, Sherjil Ozair (2014)
Google Scholar
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)
CrossRef
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)
Google Scholar
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv (2013)
Google Scholar
Lu, R., Duan, Z.: Bidirectional GRU for sound event detection. Detection and Classification of Acoustic Scenes and Events (2017)
Google Scholar
Luo, Y., Cai, X., Zhang, Y., Xu, J., et al.: Multivariate time series imputation with generative adversarial networks. In: NIPS (2018)
Google Scholar
Luo, Y., Cai, X., Zhang, Y., Xu, J., Xiaojie, Y.: Multivariate time series imputation with generative adversarial networks. In: NIPS (2018)
Google Scholar
Pan, J.-Y., Yang, H.-J., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation discovery. In: ACM SIGKDD (2004)
Google Scholar
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)
Google Scholar
Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. (2011)
Google Scholar
Śmieja, M., Struski, Ł., Tabor, J., Zieliński, B., Spurek, P.: Processing of missing data by neural networks. In: NIPS (2018)
Google Scholar
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: NIPS (2012)
Google Scholar
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR (2014)
Google Scholar
Tran, L., Liu, X., Zhou, J., Jin, R.: Missing modalities imputation via cascaded residual autoencoder. In: CVPR (2017)
Google Scholar
Walz, J.M., Goldman, R.I., Carapezza, M., Muraskin, J., Brown, T.R., Sajda, P.: Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. J. Neurosci. (2013)
Google Scholar
Walz, J.M., Goldman, R.I., Carapezza,, M., Muraskin, J., Brown, T.R., Sajda, P.: Simultaneous eeg-fmri reveals a temporal cascade of task-related and default-mode activations during a simple target detection task. Neuroimage (2014)
Google Scholar
Wehrl, H.F., et al.: Simultaneous pet-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nature Med. (2013)
Google Scholar
White, I., Royston, P., Wood, A.: Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. (2011)
Google Scholar