Skip to main content

Transformers for Multi-label Classification of Medical Text: An Empirical Comparison

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2021)

Abstract

Recent advancements in machine learning-based multi-label medical text classification techniques have been used to help enhance healthcare and aid better patient care. This research is motivated by transformers’ success in natural language processing tasks, and the opportunity to further improve performance for medical-domain specific tasks by exploiting models pre-trained on health data. We consider transfer learning involving fine-tuning of pre-trained models for predicting medical codes, formulated as a multi-label problem. We find that domain-specific transformers outperform state-of-the-art results for multi-label problems with the number of labels ranging from 18 to 158, for a fixed sequence length. Additionally, we find that, for longer documents and/or number of labels greater than 300, traditional neural networks still have an edge over transformers. These findings are obtained by performing extensive experiments on the semi-structured eICU data and the free-form MIMIC III data, and applying various transformers including BERT, RoBERTa, and Longformer variations. The electronic health record data used in this research exhibits a high level of label imbalance. Considering individual label accuracy, we find that for eICU data medical-domain specific RoBERTa models achieve improvements for more frequent labels. For infrequent labels, in both datasets, traditional neural networks still perform better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/huggingface/transformers.

References

  1. Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78 (2019)

    Google Scholar 

  2. Amin, S., Neumann, G., Dunfield, K., Vechkaeva, A., Chapman, K.A., Wixted, M.K.: MLT-DFKI at CLEF eHealth 2019: multi-label classification of ICD-10 Codes with BERT. In: CLEF (Working Notes) (2019)

    Google Scholar 

  3. Amin-Nejad, A., Ive, J., Velupillai, S.: Exploring transformer text generation for medical dataset augmentation. In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 4699–4708 (2020)

    Google Scholar 

  4. Beltagy, I., Peters, M., Cohan, A.: Longformer: the long-document transformer. arXiv preprint arXiv:2004.05150 (2020)

  5. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. In: Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8), 2014 (2014)

    Google Scholar 

  6. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: ACL (2019)

    Google Scholar 

  7. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  8. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  9. Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. arXiv preprint arXiv:2007.15779 (2020)

  10. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains and tasks. In: Proceedings of ACL (2020)

    Google Scholar 

  11. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  12. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics (2014)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  14. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  15. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-training distributed word representations. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018) (2018)

    Google Scholar 

  16. Moons, E., Khanna, A., Akkasi, A., Moens, M.F.: A comparison of deep learning methods for ICD coding of clinical records. Appl. Sci. 10(15), 5262 (2020)

    Article  Google Scholar 

  17. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1. ACL: New Orleans, LA, USA (2018)

    Google Scholar 

  18. Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G., Badawi, O.: The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Sci. Data 5, 180178 (2018)

    Article  Google Scholar 

  19. Sänger, M., Weber, L., Kittner, M., Leser, U.: Classifying german animal experiment summaries with multi-lingual BERT at CLEF eHealth 2019 Task 1. In: CLEF (Working Notes) (2019)

    Google Scholar 

  20. Schäfer, H., Friedrich, C.: Multilingual ICD-10 code assignment with transformer architectures using MIMIC-III discharge summaries. In: CLEF 2020 (2020)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008 (2017)

    Google Scholar 

  22. Yogarajan, V., Gouk, H., Smith, T., Mayo, M., Pfahringer, B.: Comparing high dimensional word embeddings trained on medical text to bag-of-words for predicting medical codes. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) ACIIDS 2020. LNCS (LNAI), vol. 12033, pp. 97–108. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41964-6_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithya Yogarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B. (2021). Transformers for Multi-label Classification of Medical Text: An Empirical Comparison. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(), vol 12721. Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77211-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77210-9

  • Online ISBN: 978-3-030-77211-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics