Skip to main content

Challenges of Gas Injection

  • Chapter
  • First Online:
Fundamentals and Practical Aspects of Gas Injection

Part of the book series: Petroleum Engineering ((PEEN))

Abstract

Gas injection operations are faced with important challenges. These challenges must be studied carefully before the operation in order to increase the gas injection efficiency. This chapter provides a review of the most important issues for designing the different gas injection methods. The compatibility of fluids and rocks is discussed after the introduction part. In Sect. 9.3, corrosion in the different gas injection methods such as carbon capture and sequestration (CCS), acid and flue gas injection are investigated. Gravity override as one of the vigorous problems of gas injection is discussed in Sect. 9.4. Gas mobility control procedures are introduced in Sect. 9.5. In Sect. 9.6, cap rock integrity as one of the important issues in the gas injection operation is studied in detail. Phase trapping during the gas injection and HSE are discussed in Sects. 9.7 and 9.8, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCS:

Carbon capture and sequestration

EOR:

Enhanced oil recovery

FCM:

First contact miscibility

HSE:

Health, Safety and Environment

MCM:

Multiple contact miscibility

MVA:

Monitoring, verification and accounting

SAG:

Surfactant-alternating gas

SRF:

Screening and ranking framework

SIMGAP:

Simultaneous injection of miscible gas and polymer

WAG:

Water alternating gas

UGS:

Underground Gas Injection

g:

Gravitational acceleration

M:

Mobility Ratio

NG:

Gravity Number

p:

Partial pressure, bar

T:

Temperature, K

Vcor:

Corrosion rate, mm/yr

ρ :

Specific Gravity

μ :

Viscosity

o:

Displaced fluid

s:

Displacing fluid

References

  1. Okwen RT. Formation damage by CO2 asphaltene precipitation. In: SPE International symposium and exhibition on formation damage control. Society of Petroleum Engineers; 2006.

    Google Scholar 

  2. Jin M, Ribeiro A, Mackay E, Guimarães L, Bagudu U. Geochemical modelling of formation damage risk during CO2 injection in saline aquifers. J Nat Gas Sci Eng. 2016;35:703–19.

    Article  Google Scholar 

  3. Kalantari-Dahaghi A, Gholami V, Moghadasi J, Abdi R. Formation damage through asphaltene precipitation resulting from CO2 gas injection in Iranian carbonate reservoirs. SPE Prod Oper. 2008;23:210–4.

    Google Scholar 

  4. Kalantari-Dahaghi AM, Moghadasi J, Gholami V, Abdi R. Formation damage due to asphaltene precipitation resulting from CO2 gas injection in Iranian carbonate reservoirs. In: SPE Europe annual conference and exhibition. Society of Petroleum Engineers; 2006.

    Google Scholar 

  5. Mohamed IM, Nasr-El-Din HA. Formation damage due to CO2 sequestration in deep saline carbonate aquifers. In: SPE International symposium and exhibition on formation damage control. Society of Petroleum Engineers; 2012.

    Google Scholar 

  6. Mohamed I, Nasr-El-Din HA. Fluid/rock interactions during CO2 sequestration in deep saline carbonate aquifers: laboratory and modeling studies. SPE J. 2013;18:468–85.

    Article  Google Scholar 

  7. Mohamed IM, He J, Nasr-El-Din HA. Permeability change during CO2 injection in carbonate aquifers: experimental study. In: SPE Americas E&P health, safety, security, and environmental conference. Society of Petroleum Engineers; 2011.

    Google Scholar 

  8. Srivastava RK, Huang SS, Dong M. Asphaltene deposition during CO2 flooding. SPE Prod Facil. 1999;14:235–45.

    Article  Google Scholar 

  9. Minssieux L, Nabzar L, Chauveteau G, Longeron D, Bensalem R. Permeability damage due to asphaltene deposition: experimental and modeling aspects. Rev l’Institut Français Du Pétrole. 1998;53:313–27.

    Article  Google Scholar 

  10. Bennion DB, Thomas FB, Ma T. Formation damage processes reducing productivity of low permeability gas reservoirs. In: SPE Rocky Mountain regional/low-permeability reservoirs symposium and exhibition. Society of Petroleum Engineers; 2000.

    Google Scholar 

  11. Tiu BDB, Advincula RC. Polymeric corrosion inhibitors for the oil and gas industry: design principles and mechanism. React Funct Polym. 2015;95:25–45.

    Article  Google Scholar 

  12. Chambers B, Kane RD, Yunovich M. Corrosion and selection of alloys for CCS (Carbon Capture and Storage) systems: current challenges. In: SPE International conference on CO2 capture, storage, utility. Society of Petroleum Engineers; 2010.

    Google Scholar 

  13. De Waard C, Milliams DE. Carbonic acid corrosion of steel. Corrosion. 1975;31:177–81.

    Article  Google Scholar 

  14. Bachu S, Gunter WD. Acid-gas injection in the Alberta basin, Canada: a CO2-storage experience. Geol Soc Lond Spec Publ. 2004;233:225–34.

    Article  Google Scholar 

  15. Carroll JJ, Lui DW. Density, phase behavior keys to acid gas injection. Oil Gas J. 1997;95.

    Google Scholar 

  16. Ng H-J, Carroll JJ, Maddocks J. Impact of thermophysical properties research on acid gas injection process design. In: Proceedings of the annual convention of the gas processors association. Gas Processors Association; 1999. p. 114–20.

    Google Scholar 

  17. Bachu S, Haug K, Michael K, Buschkuehle BE, Adams JJ. Deep injection of acid gas in Western Canada. Dev Water Sci. 2005;52:623–35.

    Google Scholar 

  18. Yee C-T, Stroich A. Flue gas injection into a mature SAGD steam chamber at the Dover Project (Formerly UTF). J Can Pet Technol. 2004;43.

    Google Scholar 

  19. Li S, Zhang K, Wang Q. Experimental study on the corrosion of a downhole string under flue gas injection conditions. Energy Sci Eng. 2019;7:2620–32.

    Article  Google Scholar 

  20. Nesic S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines. Energy Fuels. 2012;26:4098–111.

    Article  Google Scholar 

  21. Zhong X, Wang Y, Liang J, Chen L, Song X. The coupling effect of O2 and H2S on the corrosion of G20 steel in a simulating environment of flue gas injection in the Xinjiang oil field. Materials (Basel). 2018;11:1635.

    Article  Google Scholar 

  22. Stone HL. Vertical, conformance in an alternating water-miscible gas flood. In: SPE Annual technical conference and exhibition. Society of Petroleum Engineers; 1982.

    Google Scholar 

  23. Jenkins MK. An analytical model for water/gas miscible displacements. In: SPE Enhanced oil recovery symposium. Society of Petroleum Engineers; 1984.

    Google Scholar 

  24. Pritchard DWL, Georgi DT, Hemingson P, Okazawa T. Reservoir surveillance impacts management, of the Judy creek hydrocarbon miscible flood. In: SPE/DOE Enhanced oil recovery symposium. Society of Petroleum Engineers; 1990.

    Google Scholar 

  25. Dawson AG, Jackson DD, Buskirk DL. Impact of solvent injection strategy and reservoir description on hydrocarbon miscible EOR for the Prudhoe Bay Unit, Alaska. In: SPE Annual technical conference and exhibition. Society of Petroleum Engineers; 1989.

    Google Scholar 

  26. Magruder JB, Stiles LH, Yelverton TD. Review of the means San Andres Unit CO2 tertiary project. J Pet Technol. 1990;42:638–44.

    Article  Google Scholar 

  27. Wylie P, Mohanty KK. Effect of wettability on oil recovery by near-miscible gas injection. In: SPE/DOE Improved oil recovery symposium. Society of Petroleum Engineers; 1998.

    Google Scholar 

  28. Burger JE, Mohanty KK. Mass transfer from bypassed zones during gas injection. SPE Reserv Eng. 1997;12:124–30.

    Article  Google Scholar 

  29. Moissis DE, Wheeler MF, Miller CA. Simulation of miscible viscous fingering using a modified method of characteristics: effects of gravity and heterogeneity. SPE Adv Technol Ser. 1993;1:62–70.

    Article  Google Scholar 

  30. Sahimi M, Rasaei MR, Haghighi M. Gas injection and fingering in porous media. In: Gas transport in porous media. Springer; 2006, p. 133–68.

    Google Scholar 

  31. Nordbotten JM, Celia MA, Bachu S. Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp Porous Media. 2005;58:339–60.

    Article  Google Scholar 

  32. Juanes R, MacMinn C. Upscaling of capillary trapping under gravity override: application to CO2 sequestration in aquifers. In: SPE improved oil recovery symposium. Society of Petroleum Engineers; 2008.

    Google Scholar 

  33. Juanes R, MacMinn CW, Szulczewski ML. The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp Porous Media. 2010;82:19–30.

    Article  Google Scholar 

  34. Abdelgawad KZ, Mahmoud MA. In-situ generation of CO2 to eliminate the problem of gravity override in EOR of carbonate reservoirs. In: SPE Middle East Oil Gas show and conference. Society of Petroleum Engineers; 2015.

    Google Scholar 

  35. Majidaie S, Khanifar A, Onur M, Tan IM. A simulation study of chemically enhanced water alternating gas (CWAG) injection. In: SPE EOR conference at oil and gas West Asia. Society of Petroleum Engineers; 2012.

    Google Scholar 

  36. Blaker T, Celius HK, Lie T, Martinsen HA, Rasmussen L, Vassenden F. Foam for gas mobility control in the Snorre field: the FAWAG project. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1999.

    Google Scholar 

  37. Kovscek AR, Bertin HJ. Foam mobility in heterogeneous porous media. Transp Porous Media. 2003;52:17–35.

    Article  Google Scholar 

  38. Haugen Å, Mani N, Svenningsen S, Brattekås B, Graue A, Ersland G, et al. Miscible and immiscible foam injection for mobility control and EOR in fractured oil-wet carbonate rocks. Transp Porous Media. 2014;104:109–31.

    Article  Google Scholar 

  39. Stephenson DJ, Graham AG, Luhning RW. Mobility control experience in the Joffre Viking miscible CO2 flood. SPE Reserv Eng. 1993;8:183–8.

    Article  Google Scholar 

  40. Dellinger SE, Patton JT, Holbrook ST. CO2 mobility control. Soc Pet Eng J. 1984;24:191–6.

    Article  Google Scholar 

  41. Sagir M, Tan IM, Mushtaq M, Pervaiz M, Tahir MS, Shahzad K. CO2 mobility control using CO2 philic surfactant for enhanced oil recovery. J Pet Explor Prod Technol. 2016;6:401–7.

    Article  Google Scholar 

  42. Memon MK, Shuker MT, Elraies KA. Study of blended surfactants to generate stable foam in presence of crude oil for gas mobility control. J Pet Explor Prod Technol. 2017;7:77–85.

    Article  Google Scholar 

  43. Masalmeh SK, Wei L, Blom C. Mobility control for gas injection in heterogeneous carbonate reservoirs: comparison of foams versus polymers. In: SPE middle east oil gas show and conference. Society of Petroleum Engineers; 2011.

    Google Scholar 

  44. Rutqvist J, Tsang C-F. A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environ Geol. 2002;42:296–305.

    Article  Google Scholar 

  45. Moreno FJ, Chalaturnyk R, Jimenez J. Methodology for assessing integrity of bounding seals (Wells and Caprock) for geological storage of CO2. In: Greenhouse gas control technologies, vol. 7. Elsevier; 2005. p. 731–9.

    Google Scholar 

  46. Jimenez JA, Chalaturnyk RJ. Are disused hydrocarbon reservoirs safe for geological storage of CO2? In: International conference on greenhouse gas control technologies. Elsevier; 2003. p. 471–6.

    Google Scholar 

  47. Lavrov A. Dynamics of stresses and fractures in reservoir and cap rock under production and injection. Energy Procedia. 2016;86:381–90.

    Article  Google Scholar 

  48. Saripalli KP, Mahasenan NM, Cook EM. Risk and hazard assessment for projects involving the geological sequestration of CO2. In: International conference on greenhouse gas control technologies. Elsevier; 2003. p. 511–6.

    Google Scholar 

  49. Damen K, Faaij A, Turkenburg W. Health, safety and environmental risks of underground CO2 storage—overview of mechanisms and current knowledge. Clim Change. 2006;74:289–318.

    Article  Google Scholar 

  50. Lucier A, Zoback M, Gupta N, Ramakrishnan TS. Geomechanical aspects of CO2 sequestration in a deep saline reservoir in the Ohio River Valley region. Environ Geosci. 2006;13:85–103.

    Article  Google Scholar 

  51. Rutqvist J, Birkholzer JT, Tsang C-F. Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. Int J Rock Mech Min Sci. 2008;45:132–43.

    Article  Google Scholar 

  52. Bohloli B, Skurtveit E, Grande L, Titlestad GO, Børresen M, Johnsen Ø, et al. Evaluation of reservoir and cap-rock integrity for the Longyearbyen CO2 storage pilot based on laboratory experiments and injection tests; 2014.

    Google Scholar 

  53. Preisig M, Prévost JH. Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah, Algeria. Int J Greenh Gas Control 2011;5:1055–64.

    Google Scholar 

  54. Rutqvist J. The geomechanics of CO2 storage in deep sedimentary formations. Geotech Geol Eng. 2012;30:525–51.

    Article  Google Scholar 

  55. Kempka T, De Lucia M, Kühn M. Geomechanical integrity verification and mineral trapping quantification for the Ketzin CO2 storage pilot site by coupled numerical simulations. Energy Procedia. 2014;63:3330–8.

    Article  Google Scholar 

  56. Okamoto I, Li X, Ohsumi T. Effect of supercritical CO2 as the organic solvent on cap rock sealing performance for underground storage. Energy. 2005;30:2344–51.

    Article  Google Scholar 

  57. Gaus I, Azaroual M, Czernichowski-Lauriol I. Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol. 2005;217:319–37.

    Article  Google Scholar 

  58. Carroll SA, McNab WW, Torres SC. Experimental study of cement-sandstone/shale-brine-CO2 interactions. Geochem Trans. 2011;12:9.

    Article  Google Scholar 

  59. Smith SA, Sorensen JA, Steadman EN, Harju JA. Acid gas injection and monitoring at the Zama oil field in Alberta, Canada: a case study in demonstration-scale carbon dioxide sequestration. Energy Procedia. 2009;1:1981–8.

    Article  Google Scholar 

  60. Smith SA, McLellan P, Hawkes C, Steadman EN, Harju JA. Geomechanical testing and modeling of reservoir and cap rock integrity in an acid gas EOR/sequestration project, Zama, Alberta, Canada. Energy Procedia. 2009;1:2169–76.

    Article  Google Scholar 

  61. Bennion DB, Thomas FB, Bietz RF, Bennion DW. Water and hydrocarbon phase trapping in porous media-diagnosis, prevention and treatment. J Can Pet Technol. 1996;35.

    Google Scholar 

  62. Brown JS, Al Kobaisi MS, Kazemi H. Compositional phase trapping in CO2 WAG simulation. In: SPE Reservoir characterisation and simulation conference and exhibition. Society of Petroleum Engineers; 2013.

    Google Scholar 

  63. Iglauer S, Paluszny A, Blunt MJ. Simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ X-ray micro-tomography. Fuel. 2013;103:905–14.

    Article  Google Scholar 

  64. Zhou N, Matsumoto T, Hosokawa T, Suekane T. Pore-scale visualization of gas trapping in porous media by X-ray CT scanning. Flow Meas Instrum. 2010;21:262–7.

    Article  Google Scholar 

  65. Kimbrel EH, Herring AL, Armstrong RT, Lunati I, Bay BK, Wildenschild D. Experimental characterization of nonwetting phase trapping and implications for geologic CO2 sequestration. Int J Greenh Gas Control. 2015;42:1–15.

    Article  Google Scholar 

  66. Thorne RJ. Transition to a low carbon economy; impacts to health and the environment. In: Environmental determinants of human health. Springer; 2016. p. 169–201.

    Google Scholar 

  67. Mace MJ, Hendriks C, Coenraads R. Regulatory challenges to the implementation of carbon capture and geological storage within the European Union under EU and international law. Int J Greenh Gas Control. 2007;1:253–60.

    Article  Google Scholar 

  68. van Egmond B. Developing a method to screen and rank geological CO2 storage sites on the risk of leakage. NWS-E-2006-108, Utrecht University and TNO; 2006.

    Google Scholar 

  69. Oldenburg CM. Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk. Environ Geol. 2008;54:1687–94.

    Article  Google Scholar 

  70. Li Q, Liu G, Liu X, Li X. Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project. Int J Greenh Gas Control. 2013;17:504–14.

    Article  Google Scholar 

  71. Diao Y, Zhang S, Wang Y, Li X, Cao H. Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS Demonstration Project as a case study. Environ Earth Sci. 2015;73:7571–86.

    Article  Google Scholar 

  72. Seligsohn D, Liu Y, Forbes S, Dongjie Z, West L. CCS in China: toward an environmental, health, and safety regulatory framework; 2010.

    Google Scholar 

  73. Liu L-C, Li Q, Zhang J-T, Cao D. Toward a framework of environmental risk management for CO2 geological storage in China: gaps and suggestions for future regulations. Mitig Adapt Strateg Glob Chang. 2016;21:191–207.

    Article  Google Scholar 

  74. Lee JS, Choi EC. CO2 leakage environmental damage cost—a CCS project in South Korea. Renew Sustain Energy Rev. 2018;93:753–8.

    Article  Google Scholar 

  75. Shuter D, Bilio M, Wilday J, Murray L, Whitbread R. Safety issues and research priorities for CCS systems and infrastructure. Energy Procedia. 2011;4:2261–8.

    Article  Google Scholar 

  76. Zhang L, Huang H, Wang Y, Ren B, Ren S, Chen G, et al. CO2 storage safety and leakage monitoring in the CCS demonstration project of Jilin oilfield, China. Greenh Gases Sci Technol. 2014;4:425–39.

    Article  Google Scholar 

  77. Smith SA, Sorensen JA, Steadman EN, Harju JA, Ryan D. Zama acid gas EOR, CO2 sequestration, and monitoring project. Energy Procedia. 2011;4:3957–64.

    Article  Google Scholar 

  78. Evans DJ, Chadwick RA. Underground gas storage: an introduction and UK perspective. Geol Soc Lond Spec Publ. 2009;313:1–11.

    Article  Google Scholar 

  79. Li S, Dong M, Li Z, Huang S, Qing H, Nickel E. Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long-term CO2 storage in the Weyburn field. Geofluids. 2005;5:326–34.

    Article  Google Scholar 

  80. Li Z, Dong M, Li S, Huang S. CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity. Energy Convers Manag. 2006;47:1372–82.

    Article  Google Scholar 

  81. Reitenbach V, Ganzer L, Albrecht D, Hagemann B. Influence of added hydrogen on underground gas storage: a review of key issues. Environ Earth Sci. 2015;73:6927–37.

    Article  Google Scholar 

  82. Bai M, Shen A, Meng L, Zhu J, Song K. Well completion issues for underground gas storage in oil and gas reservoirs in China. J Pet Sci Eng. 2018;171:584–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Azin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azin, R., Izadpanahi, A., Ranjbar, A. (2022). Challenges of Gas Injection. In: Azin, R., Izadpanahi, A. (eds) Fundamentals and Practical Aspects of Gas Injection. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77200-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77200-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77199-7

  • Online ISBN: 978-3-030-77200-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics