Skip to main content

Water-Hydrocarbons System

  • Chapter
  • First Online:
Fundamentals and Practical Aspects of Gas Injection

Part of the book series: Petroleum Engineering ((PEEN))

  • 493 Accesses

Abstract

In this chapter, several methods will be discussed which can be used to predict the water content of gases. Most of these methods are based on equations of state and rigorous thermodynamic models. Different methods of predicting water content of acid gas systems are evaluated based on the literature experimental data. In addition, the water content diagrams compatible with the experimental data for pure CO2, H2S, CH4 and their mixture are presented. These charts use for facility type calculations and trouble shooting. In another section, the gas solubility concepts will be reviewed. This section contains hydrocarbon gas solubility in water, non-hydrocarbon gas solubility in water, the calculation of gas solubility in water using Henry’s law constant and the effect of salinity on gas solubility. At the end of this chapter, a brief review has been conducted on the activity models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

f:

Fugacity

P:

Pressure,

R:

Universal gas constant, cm3 MPa/(kmole)

T:

Temperature,

Vi:

Partial molar volume, cm3/gmole

W:

Water Content, kg/106 Sm3

y:

Mole fraction in gas phase

μ :

Chemical potential

γ :

Activity coefficient

References

  1. Campbell JM, Gas conditioning and processing, The basic principles, vol. 1, 9th ed. Norman, Oklahoma: Campbell Petroleum Series; 2014.

    Google Scholar 

  2. G. P. S. A. (U.S.), G. P. Association. Engineering data book : SI version. Tulsa, Okla.: Gas Processors Suppliers Association; 2012.

    Google Scholar 

  3. Moshfeghian M, Lean sweet natural gas water content correlation. PetroSkills TOTM; 2014. https://www.petroskills.com/blog/entry/lean-sweet-natural-gas-water-content-correlation.

  4. Moshfeghian M, Propane–Water phase behavior at low to moderate pressures. PetroSkills TOTM; 2018. http://www.jmcampbell.com/tip-of-the-month/2018/09/propane-water-phase-behavior-at-low-to-moderate-pressures/.

  5. I. Bryan Research and Engineering, ProMax 3.2, Bryan, Texas; 2014.

    Google Scholar 

  6. Moshfeghian M. Ethane–Water phase behavior at low to moderate pressures. PetroSkills TOTM; 2018. http://www.jmcampbell.com/tip-of-the-month/2018/12/ethane-water-phase-behavior-at-low-to-moderate-pressures/.

  7. Moshfeghian M. Acid–gas water content. PetroSkills TOTM; 2014. http://www.jmcampbell.com/tip-of-the-month/2014/02/acid-gas-water-content/.

  8. Carroll JJ, The water content of acid gas and sour gas from 100 to 220 F and pressures to 10,000 Psia. In: 81st annual GPA convention; 2002.

    Google Scholar 

  9. Yarrison M. Water content of high pressure, high temperature methane, ethane and methane + CO2, ethane + CO2 Gas Processors Association; 2008.

    Google Scholar 

  10. Erbar JH, Jagota AK, Muthswamy S, Moshfeghian M. Predicting synthetic gas and natural gas thermodynamic properties using a modified Soave-Redlich-Kwong equation of state. Gas Process. Res. Report, GPA RR-42, Tulsa, USA; 1980.

    Google Scholar 

  11. Maddox RN, Lilly LL, Moshfeghian M, Elizondo E. Estimating water content of sour natural gas mixtures. In: Laurance Reid gas conditioning conference, vol. 8; 1988.

    Google Scholar 

  12. Wichert GC, Wichert E. Chart estimates water content of sour natural gas. Oil Gas J (United States). 1993;91(13).

    Google Scholar 

  13. Huang SS-S, Leu A-D, Ng H-J, Robinson DB. The phase behavior of two mixtures of methane, carbon dioxide, hydrogen sulfide, and water. Fluid Phase Equilib. 1985;19(1–2):21–32.

    Article  Google Scholar 

  14. Moshfeghian M. Water-sour natural gas phase behavior. PetroSkills TOTM; 2007. http://www.jmcampbell.com/tip-of-the-month/2007/11/water-sour-natural-gas-phase-behavior/.

  15. Ng HJ, Chen CJ, Schroeder H. Water content of natural gas systems containing acid gas: GPA Project 945. Gas Processors Association; 2001.

    Google Scholar 

  16. Culberson OL, Horn AB, McKetta JJ Jr. Phase equilibria in hydrocarbon-water systems. J Pet Technol. 1950;2(01):1–6.

    Article  Google Scholar 

  17. Culberson OL, McKetta JJ Jr. Phase equilibria in hydrocarbon-water systems II-The solubility of ethane in water at pressures to 10,000 psi. J Pet Technol. 1950;2(11):319–22.

    Article  Google Scholar 

  18. Culberson OL, McKetta JJ Jr. Phase equilibria in hydrocarbon-water systems III-the solubility of methane in water at pressures to 10,000 psia. J Pet Technol. 1951;3(08):223–6.

    Article  Google Scholar 

  19. Reamer HH, Sage BH, Lacey WN. Phase equilibria in hydrocarbon systems. n-butane-water system in the two-phase region. Ind Eng Chem. 1952;44(3):609–15.

    Article  Google Scholar 

  20. Song KY, Feneyrou G, Fleyfel F, Martin R, Lievois J, Kobayashi R. Solubility measurements of methane and ethane in water at and near hydrate conditions. Fluid Phase Equilib. 1997;128(1–2):249–59.

    Article  Google Scholar 

  21. Dhima A, de Hemptinne J-C, Moracchini G. Solubility of light hydrocarbons and their mixtures in pure water under high pressure. Fluid Phase Equilib. 1998;145(1):129–50.

    Article  Google Scholar 

  22. Chapoy A, Mohammadi AH, Richon D, Tohidi B. Gas solubility measurement and modeling for methane–water and methane–ethane–n-butane–water systems at low temperature conditions. Fluid Phase Equilib. 2004a;220(1):113–21.

    Article  Google Scholar 

  23. Chapoy A, Mokraoui S, Valtz A, Richon D, Mohammadi AH, Tohidi B. Solubility measurement and modeling for the system propane–water from 277.62 to 368.16 K. Fluid Phase Equilib. 2004b;226:213–20.

    Article  Google Scholar 

  24. Reshadi P, Nasrifar K, Moshfeghian M. Evaluating the phase equilibria of liquid water+ natural gas mixtures using cubic equations of state with asymmetric mixing rules. Fluid Phase Equilib. 2011;302(1–2):179–89.

    Article  Google Scholar 

  25. Mohebbi V, Naderifar A, Behbahani RM, Moshfeghian M. Determination of Henry’s law constant of light hydrocarbon gases at low temperatures. J Chem Thermodyn. 2012;51:8–11.

    Article  Google Scholar 

  26. Wiebe R, Gaddy VL. The solubility in water of carbon dioxide at 50, 75 and 100, at pressures to 700 atmospheres. J Am Chem Soc. 1939;61(2):315–8.

    Article  Google Scholar 

  27. Wiebe R, Gaddy VL. The solubility of carbon dioxide in water at various temperatures from 12 to 40 and at pressures to 500 atmospheres. Critical phenomena. J Am Chem Soc. 1940;62(4):815–7.

    Article  Google Scholar 

  28. Yang SO, Yang IM, Kim YS, Lee CS. Measurement and prediction of phase equilibria for water+ CO2 in hydrate forming conditions. Fluid Phase Equilib. 2000;175(1–2):75–89.

    Article  Google Scholar 

  29. Chapoy A, Mohammadi AH, Chareton A, Tohidi B, Richon D. Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxide−water system. Ind Eng Chem Res. 2004;43(7):1794–802.

    Article  Google Scholar 

  30. Wright RH, Maass O. The solubility of hydrogen sulphide in water from the vapor pressures of the solutions. Can J Res. 1932;6(1):94–101.

    Article  Google Scholar 

  31. Selleck FT, Carmichael LT, Sage BH. Phase behavior in the hydrogen sulfide-water system. Ind Eng Chem. 1952;44(9):2219–26.

    Article  Google Scholar 

  32. Suleimenov OM, Krupp RE. Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320 C and at saturation pressures. Geochim Cosmochim Acta. 1994;58(11):2433–44.

    Article  Google Scholar 

  33. Chapoy A, Mohammadi AH, Tohidi B, Valtz A, Richon D. Experimental measurement and phase behavior modeling of hydrogen sulfide-water binary system. Ind Eng Chem Res. 2005;44(19):7567–74.

    Article  Google Scholar 

  34. Goodman JB, Krase NW. Solubility of nitrogen in water at high pressures and temperatures. Ind Eng Chem. 1931;23(4):401–4.

    Article  Google Scholar 

  35. Wiebe R, Gaddy VL, Heins C Jr. The solubility of nitrogen in water at 50, 75 and 100 from 25 to 1000 atmospheres. J Am Chem Soc. 1933;55(3):947–53.

    Article  Google Scholar 

  36. Saddington AW, Krase NW. Vapor—liquid equilibria in the system nitrogen—water. J Am Chem Soc. 1934;56(2):353–61.

    Article  Google Scholar 

  37. Chapoy A, Mohammadi AH, Tohidi B, Richon D. Gas solubility measurement and modeling for the nitrogen+ water system from 274.18 K to 363.02 K. J Chem Eng Data. 2004;49(4):1110–5.

    Article  Google Scholar 

  38. Danesh A. PVT and phase behaviour of petroleum reservoir fluids. Elsevier; 1998.

    Google Scholar 

  39. Kobayashi R, Katz D. Vapor-liquid equilibria for binary hydrocarbon-water systems. Ind Eng Chem. 1953;45(2):440–6.

    Article  Google Scholar 

  40. Søreide I, Whitson CH. Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine. Fluid Phase Equilib. 1992;77:217–40.

    Article  Google Scholar 

  41. O’Sullivan TD, Nagy B. Solubility of natural gases in aqueous salt solutions—III Nitrogen in aqueous NaCl at high pressures. Geochim Cosmochim Acta. 1966;30(6):617–9.

    Article  Google Scholar 

  42. Duan Z, Møller N, Weare JH. Prediction of the solubility of H2S in NaCl aqueous solution: an equation of state approach. Chem Geol. 1996;130(1–2):15–20.

    Article  Google Scholar 

  43. Zirrahi M, Azin R, Hassanzadeh H, Moshfeghian M. Mutual solubility of CH4, CO2, H2S, and their mixtures in brine under subsurface disposal conditions. Fluid Phase Equilib. 2012;324:80–93.

    Article  Google Scholar 

  44. Firoozabadi A. Thermodynamics of hydrocarbon reservoirs. McGraw-Hill; 1999.

    Google Scholar 

  45. de Azevedo EG, Lichtenthaler RN, Prausnitz JM. Molecular thermodynamics of luids-phase equilibria; 1986.

    Google Scholar 

  46. Duan Z, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol. 2003;193(3–4):257–71.

    Article  Google Scholar 

  47. Duan Z, Sun R, Liu R, Zhu C. Accurate thermodynamic model for the calculation of H2S solubility in pure water and brines. Energy Fuels. 2007;21(4):2056–65.

    Article  Google Scholar 

  48. Duan Z, Mao S. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochim Cosmochim Acta. 2006;70(13):3369–86.

    Article  Google Scholar 

  49. Zirrahi M, Azin R, Hassanzadeh H, Moshfeghian M. Prediction of water content of sour and acid gases. Fluid Phase Equilib. 2010;299(2):171–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Azin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Izadpanahi, A., Azin, R. (2022). Water-Hydrocarbons System. In: Azin, R., Izadpanahi, A. (eds) Fundamentals and Practical Aspects of Gas Injection. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77200-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77200-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77199-7

  • Online ISBN: 978-3-030-77200-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics