Skip to main content

Gas Injection for Pressure Maintenance in Fractured Reservoirs

  • Chapter
  • First Online:
Fundamentals and Practical Aspects of Gas Injection

Part of the book series: Petroleum Engineering ((PEEN))

Abstract

Gas injection into the gas cap which is known as pressure maintenance or crestal gas injection is done to increase the reservoir pressure. Different types of gas may be injected in this method including producing gas, N2, CO2 etc. The injected gas is chosen base on the field development studies. Each of these gases has some advantage and disadvantages. Gas injection in naturally fractured reservoirs is a challenge which needs more investigation on this subject. This chapter summarizes the basic concepts of pressure maintenance and active mechanisms during pressure maintenance in naturally fractured reservoirs. Also, this chapter provides the essential concepts in simulation of pressure maintenance in fractured reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD-OO:

Automatic differentiation-object oriented

BHP:

Bottom-hole pressure

EC:

European commission

EDFM:

Embedded discrete fracture model

EOR:

Enhanced oil recovery

GMRES:

Generalized minimal residual method

GOR:

Gas oil Ratio

HFM:

Hierarchical fracture module

ILU:

Incomplete lower/upper

IOR:

Improved oil recovery

IPR:

Inflow-performance relation

MINC:

Multiple Interacting Continua

MRST:

Matlab reservoir simulation toolbox

MsRSB:

Multiscale restriction smoothed basis

SAIGUP:

Sensitivity analysis of the impact of geological uncertainties on production forecasting

A:

Area, m2

B:

Formation volume factor, vol/vol

C:

Concentration, mole/m3

c:

Component

cf:

Formation Compressibility, 1/psi

D:

Depth, m

\(D_{c,o} ,D_{c.g}\) :

Diffusion coefficient of component c in oil and gas, cm2/s

\(D_{ij}\) :

Binary diffusion coefficient of components i and j, cm2/s

Dg:

Gas diffusion coefficient, cm2/s

\(D_{e,c}\) :

Effective diffusion coefficient for component c at matrix-fracture boundary, cm2/s

\(D_{e,i}\) :

Effective diffusion coefficient for component i, cm2/s

d:

Correlation coefficients

e:

Correlation coefficients

\(f_{o,c} ,f_{g,c}\) :

Fugacity of component c in oil and gas, psi

\(f_{m,i}\) :

Fugacity of component i in phase m, psi

F:

Formation resistivity factor

G:

Gas in place, ft3

H:

Fracture thickness in z-direction, m

k:

Permeability, md

kc:

Diffusion mass transfer coefficient of component c at matrix-fracture boundary, mole/(m2 s)

Kc:

Equilibrium ratio of component c

ki,j:

Binary interaction coefficient

kro, krg,krw:

Relative permeability of oil, gas, and water

krgcw:

Gas relative permeability at connate water

krocw:

Oil relative permeability at connate water

krwro:

Water relative permeability at residual oil saturation

L:

Moles of oil per unit mole feed

l :

Length of fracture, m

m:

Cementation factor

MWi:

Molecular weight of component i, g/gmole

n1:

Exponent

nc:

Number of components

N:

Oil in place, bbl

Nc,p:

Diffusion molar flux of component c at phase p, mole/(m2 s)

nog,ng,nw,now:

Exponents on relative permeability curves

\(P_{cog} ,P_{cow}\) :

Capillary pressure (oil–gas and oil–water), psi

\(P_{c}^{0}\) :

Reference capillary pressure at reference interfacial tension, psi

p:

Pressure, psi

Pc:

Capillary pressure, psi

pc,i:

Critical pressure of component i, psi

Pi:

Parachor of component i

po,pg,pw:

Pressure of oil, gas, and water, psi

\(p_{ref}\) :

Reference pressure, psi

\(\Delta p\) :

Pressure gradient, psi/ft

\(q_{D,fm,c}\) :

Diffusion rate of component c at the matrix-fracture boundary, mole/s

\(q_{C,fm,c}\) :

Convection mass transfer rate of component c at the matrix-fracture boundary, mole/s

q:

Flow rate, ft3/day

R:

Universal gas constant, cm3 MPa/(K. mole)

Rs:

Solution gas oil-ratio, scf/stb

Rs:

Produced gas oil-ratio, scf/stb

Sgg:

Geometric mean of matrix and fracture gas saturation

So,Sg,Sw:

Saturation of oil, gas, and water

Sgr:

Residual gas saturation

Sorg:

Residual oil saturation to gas

Sorw:

Residual oil saturation to water

Swc:

Critical water saturation

Swir:

Irreducible water saturation

Si:

Volume shift parameter in PR EOS

t:

Time, day

T:

Temperature, K

Tc,i:

Critical temperature of component i, K

To,Tg,Tw:

Transmisibilities of oil, gas, and water, mole.md/(m2.cp)

\(T_{o,c}^{M} ,T_{g,c}^{M}\) :

Molecular transmisibilities of component c in oil and gas, mole/s

Tr,i:

Reduced temperature of component i

V:

Moles of vapor per unit mole feed

Vp:

Pore volume

\(\vec{v}\) :

Average gas stream velocity in the fracture, m/s

\(\vec{v}_{o}\) :

Oil bulk velocity, m/s

\(\vec{v}_{g}\) :

Gas bulk velocity, m/s

\(v_{x} ,v_{y} ,v_{z}\) :

Fluid bulk velocities in x, y, and z directions, m/s

Vr:

Bulk volume, m3

Vp:

Pore volume, m3

Vc,i:

Critical volume of component i, cm3/ mole

W:

Fracture width in y-direction, m

x,y,z:

Cartesian coordinates

xc:

Mole fraction of component c in oil phase

xj:

Mole fraction of component j in oil phase

xi,m,xj,m:

Mole fraction of component i and j in phase m

yc:

Mole fraction of component c in gas phase

yj:

Mole fraction of component j in gas phase

\(y_{c,mf}\) :

Mole fraction of component c in the gas phase at matrix-fracture boundary

\(y_{c,f}\) :

Mole fraction of component c at the entrance of the fracture

\(\left( {y_{i} } \right)_{m} ,\left( {y_{i} } \right)_{f}\) :

Mole fraction of component i in gas phase in matrix and fracture

Zc:

Overall composition of component c

Zj:

Overall composition of component j

Zo,Zg,Zm:

Compressibility factor of oil, gas, and phase m

\(z_{ref}\) :

Reference elevation, m

We:

Water influx

\({\alpha }_{s}\) :

Factor for considering skin-effect at matrix-fracture boundary

\(\Omega _{ij}\) :

Collision diameter of the Lennard–Jones potential

\(\sigma_{ij}\) :

Collision integral of the Lennard–Jones potential

\(\Delta t\) :

Time step, day

\(\Delta x,\Delta y,\Delta z\) :

Grid cells dimensions, m

\(\gamma_{o} ,\gamma_{g} ,\gamma_{w}\) :

Specific gravity of oil, gas, and water, psi/ft

\(\overline{{\gamma_{o} }} ,\overline{{\gamma_{g} }} ,\overline{{\gamma_{w} }}\) :

Average specific weight of oil, gas, and water, psi/ft

\(\mu_{o} ,\mu_{g} ,\mu_{w}\) :

Viscosity of oil, gas, and water, cp

\(\phi\) :

Porosity

\(\phi_{0}\) :

Porosity at a reference pressure

\(\phi_{o,c} ,\phi_{g,c}\) :

Fugacity coefficient of component c in oil and gas

\(\rho_{o} ,\rho_{g} ,\rho_{w}\) :

Molar densities of oil, gas, and water, mole/cm3

\(\rho_{r}\) :

Reduced density

\(\rho_{m}\) :

Mixture molar density, mole/cm3

\(\rho_{C,s}\) :

Critical density of component c, mole/cm3

\(\rho_{mr}\) :

Reduced density of the mixture

λ:

Mobility

\(\sigma\) :

Interfacial tension, dyne/cm

\(\sigma_{0}\) :

Initial interfacial tension corresponding to the read-in capillary pressure, dyne/cm

\(\tau\) :

Tortuosity of the porous medium

\(\omega_{i} ,\omega_{c}\) :

Acentric factor of component i and c

c:

Component

c:

Capillary

c:

Critical

f:

Fracture

g:

Gas

i:

Component

i:

Grid block number in x-direction

i:

Initial

j:

Grid block number in y-direction

k:

Grid block number in z-direction

m:

Mixture

m:

Phase

m:

Matrix block

o:

Oil

p:

Phase

p:

Produced

p:

Pore

r:

Reduced

ref:

Reference

t:

Total

x,y,z:

X,y,z directions

w:

Water

l :

Iteration level

L:

Time step

M:

Molecular diffusion

v:

Vapor

References

  1. Terry RE. Enhanced oil recovery. Encycl Phys Sci Technol 2003; 18:503–18. https://doi.org/10.1016/B0-12-227410-5/00868-1.

  2. Klotz JA. The gravity drainage mechanism. J Pet Technol. 1953;5:19–21. https://doi.org/10.2118/953019-G.

    Article  Google Scholar 

  3. Jadhawar PS, Sarma HK. Numerical simulation and sensitivity analysis of gas-oil gravity drainage process of enhanced oil recovery. J Can Pet Technol. 2010;49:64–70. https://doi.org/10.2118/133373-PA.

    Article  Google Scholar 

  4. Sandrea R, Nielsen RF. Dynamics of petroleum reservoirs under gas injection. Gulf Publishing Company; 1974.

    Google Scholar 

  5. Buckley SE, Leverett MC. Mechanism of fluid displacement in sands. Trans AIME. 1942;146:107–16. https://doi.org/10.2118/942107-G.

    Article  Google Scholar 

  6. Pirson SJ. Oil reservoir engineering. Inc, NY: Mc-Graw-Hill Book Co.; 1958.

    Google Scholar 

  7. Crawford PB. Pressure maintenance needed here. J Pet Technol. 1967;19:1449–52. https://doi.org/10.2118/1784-PA.

    Article  Google Scholar 

  8. Bennett E 0. Pressure maintenance. Drill. Prod. Pract., Amarillo, Texas: American Petroleum Institute; 1938.

    Google Scholar 

  9. Tiwari S, Kumar MS. Nitrogen injection for simultaneous exploitation of gas cap. SPE Middle East Oil Show, Society of Petroleum Engineers; 2001. https://doi.org/10.2118/68169-MS.

  10. Gregory PP. Gas caps, their determination and significance. Trans AIME 1938; 127:25–30. https://doi.org/10.2118/938025-G.

  11. Bonett A, Pafitis D. Getting to the root of gas migration. Oilf Rev. 1996;8:36–49.

    Google Scholar 

  12. Riazi M, Alizadeh AH, Haghighi M, Sample R. Experimental study of gravity drainage during gas injection in carbonate rocks. Middle East 2006; 1–7.

    Google Scholar 

  13. Craig FF, Geffen TM. The determination of partial pressure maintenance performance by laboratory flow tests. Trans Am Inst Min Metall Eng. 1956;207:42–9.

    Google Scholar 

  14. Izadpanahi A, Azin R, Osfouri S, Malakooti R. Optimization of two simultaneous water and gas injection scenarios in a high GOR Iranian oil field. In: 82nd EAGE Annu. Conf. Exhib., vol. 2020, European Association of Geoscientists & Engineers; 2020, p. 1–5.

    Google Scholar 

  15. Thomas F, Zhou X, Bennion D. Towards optimizing gas condensate reservoirs. Proc Annu Tech Meet. 1995. https://doi.org/10.2118/95-09.

    Article  Google Scholar 

  16. Kenyon D. Third SPE comparative solution project: gas cycling of retrograde condensate reservoirs. J Pet Technol. 1987;39:981–97.

    Article  Google Scholar 

  17. Crego WO, Henagan JM. Report on the Mamou field pressure maintenance project. J Pet Technol. 1951;3:263–8. https://doi.org/10.2118/951263-G.

    Article  Google Scholar 

  18. Benalycherif M, Bishlawi M, Bencheikh A. Pressure maintenance in the Zarzaitine Field-Algeria 1972; 21.

    Google Scholar 

  19. Standing MB, Lindblad EN, Parsons RL. Calculated recoveries by cycling from a retrograde reservoir of variable permeability. Trans AIME. 1948;174:165–90. https://doi.org/10.2118/948165-G.

    Article  Google Scholar 

  20. Spivak A, Dixon TN. Simulation of gas-condensate reservoirs. Proc SPE Symp Numer Simul Reserv Perform 1973; 25. https://doi.org/10.2118/4271-MS.

  21. Danesh A, Henderson GD, Krinis D, Peden JM. Experimental investigation of retrograde condensation in porous media at reservoir conditions. In: SPE Annu. Tech. Conf. Exhib., Society of Petroleum Engineers; 1988. https://doi.org/10.2118/18316-MS.

  22. Barbieri RR. Statistical secondary recovery model. SPE Adv Technol Ser. 1996;4:44–52. https://doi.org/10.2118/26978-PA.

    Article  Google Scholar 

  23. van Dijkum CE, Walker T. Fractured reservoir simulation and field development, Natih Field, Oman. In: SPE Annu. Tech. Conf. Exhib., Society of Petroleum Engineers; 1991. https://doi.org/10.2118/22917-MS.

  24. Goss LE, Vague JR. Pressure maintenance operations-fort Chadbourne field odom lime reservoir. Fall Meet. Soc. Pet. Eng. AIME, Society of Petroleum Engineers; 1962. https://doi.org/10.2118/406-MS.

  25. Weyler JR, Sayre AT Jr. A novel pressure maintenance operation in a large stratigraphic trap. J Pet Technol. 1959;11:13–7. https://doi.org/10.2118/1104-G.

    Article  Google Scholar 

  26. Ma E, Gheorghiu S, Banagale M, Dashti L, Bond D, Ibrahim M, et al. Reservoir simulation to support pressure maintenance projects in the greater Burgan Field, Kuwait. SPE Middle East Oil Gas Show Conf., Society of Petroleum Engineers; 2015. https://doi.org/10.2118/172517-MS.

  27. Pavangat V, Patacchini L, Goyal P, Mohamed F, Lavenu APC, Aubertin F, et al. Development of a giant carbonate oil field, part 1: fifty years of pressure maintenance history. Abu Dhabi Int Pet Exhib Conf 2015; 1–20. https://doi.org/10.2118/177768-MS.

  28. Smith GE. Waterflooding heavy oils. SPE Rocky Mt. Reg. Meet., society of petroleum engineers; 1992, p. 473–80. https://doi.org/10.2118/24367-MS.

  29. Pawelek J, Chorney M. Waterflood behaviour of the low-gravity wainwright pool. J Can Pet Technol. 1966;5:97–104. https://doi.org/10.2118/66-02-08.

    Article  Google Scholar 

  30. Ezekwe N, Smith S, Wilson M, Humphrey M, Murphy J. Performance of a peripheral waterflood project in the main body “B” reservoirs (stevens) at the elk hills oil field, California. SPE West. Reg. Meet., Society of Petroleum Engineers; 1991. https://doi.org/10.2118/21759-MS.

  31. Cason LD. Waterflooding increases gas recovery. J Pet Technol. 1989;41:1102–6. https://doi.org/10.2118/12041-PA.

    Article  Google Scholar 

  32. Beliveau D. Waterflooding viscous oil reservoirs. SPE Reserv Eval Eng. 2009;12:4–6. https://doi.org/10.2118/113132-PA.

    Article  Google Scholar 

  33. Woodling GS, Taylor PJ, Sun HH, Nguyen QN, Brix TR. Layered waterflood surveillance in a mature field: the long beach unit. SPE West. Reg. Meet., Society of Petroleum Engineers; 1993. https://doi.org/10.2118/26082-MS.

  34. Kasrale M, Sammon PH, Jespersen PJ. Field development options for a waterflooded heavy-oil reservoir. J Pet Technol. 1993;45:888–94. https://doi.org/10.2118/20049-PA.

    Article  Google Scholar 

  35. Oefelein FH, Walker JW. California flood yields profitable recovery of heavy oil from multilayered reservoir. J Pet Technol. 1964;16:509–14. https://doi.org/10.2118/699-PA.

    Article  Google Scholar 

  36. Moghadasi J, Jamialahmadi M, Müller-Steinhagen H, Sharif A, Izadpanah MR, Motaei E, et al. Formation damage in Iranian oil fields. Int. Symp. Exhib. Form. Damage Control: Society of Petroleum Engineers; 2002.

    Book  Google Scholar 

  37. Harley YJ. Waterflood behavior of high viscosity crudes in preserved soft and unconsolidated cores. J Pet Technol. 1966; 18. https://doi.org/10.2118/1202-PA.

  38. Roark GR. Analysis of waterflood performance–block VI Ranger Zone, Wilmington field. Calif J Pet Technol. 1960;12:45–51. https://doi.org/10.2118/1370-G.

    Article  Google Scholar 

  39. Nelson KC. Wilmington Townlot unit—waterflood implementation and response. In: SPE Annu. Fall Tech. Conf. Exhib., Society of Petroleum Engineers; 1976. https://doi.org/10.2118/6167-MS.

  40. Jenkins C, Al-Sharif S, Harris R, Weisgram J, Michel D. Forty years of improved oil recovery: lessons from low-permeability turbidites of the East Wilmington Field. California SPE Int Pet Conf. 2004. https://doi.org/10.2118/92036-MS.

    Article  Google Scholar 

  41. Adams D. Experiences with waterflooding lloydminster heavy-oil reservoirs. J Can Pet Technol 1982:1643–50. https://doi.org/10.2118/10196-PA.

  42. Edgson JJ, Czyzewski G. Production evaluation of the viking Kinsella B pool unit no. 1. J Can Pet Technol 1985; 24:70–6.

    Google Scholar 

  43. Lim FH, Saner WB, Stilwell WH, Patton JT. Steamflood pilot test in waterflooded, 2,500-ft Tar Zone reservoir, fault block II Unit, Wilmington Field, California. In: SPE Annu. Tech. Conf. Exhib., Society of Petroleum Engineers; 1993, p. 1–16. https://doi.org/10.2118/26615-MS.

  44. Luis RJ, Navia W. Natural waterflooding, Campo La Peña. SPE J; 2001.

    Google Scholar 

  45. Dorsey JB. Performance review of shoats creek unit vaporizing gas-drive project. J Pet Technol. 1968;20:416–22. https://doi.org/10.2118/1886-PA.

    Article  Google Scholar 

  46. McGraw JH, Lohec RE. The Pickton field–review of a successful gas injection project. J Pet Technol. 1964;16:399–405. https://doi.org/10.2118/667-PA.

    Article  Google Scholar 

  47. Hermansen H, Thomas LKK, Sylte JEE, Aasboe BTT. Twenty five years of Ekofisk reservoir management. SPE Annu Tech Conf Exhib. 1997. https://doi.org/10.2118/38927-MS.

    Article  Google Scholar 

  48. Kaye E. Some factors in the economics of recycling. Trans AIME. 1942;146:221–30. https://doi.org/10.2118/942221-G.

    Article  Google Scholar 

  49. Brickner JW. Jurassic smackover development and pressure maintenance Bryans Mill Field, Texas. In: Fall Meet. Soc. Pet. Eng. AIME, Society of Petroleum Engineers; 1965. https://doi.org/10.2118/1278-MS.

  50. Tarner J, Evans WR, Kaveler HH, Aime M, Co PP. The Shuler Jones sand pool; Nine years of unitized pressure-maintenance operations 1951; 192:121–6.

    Google Scholar 

  51. Jacoby RH, Berry VJ. A method for predicting pressure maintenance performance for reservoirs producing volatile crude oil. Pet Trans. 1958;213:59–64.

    Google Scholar 

  52. Wikipedia. Simple English Wikipedia the free Encyclopedia; 2010.

    Google Scholar 

  53. Morales E, Lee WJ. Lease fuel, fuel gas or fuel consumed in operations—is it reserves? In: SPE Annu. Tech. Conf. Exhib., Society of Petroleum Engineers; 2014, p. 27–9. https://doi.org/10.2118/170612-MS.

  54. Zhang F, Fan X, Ding J. Field experiment of enhancing heavy oil recovery by cyclic fuel gas injection. SPE J; 2000.

    Google Scholar 

  55. Barstow WF, Watt GW. Fifteen years of progress in catalytic treating of exhaust gas. In: SPE Rocky Mt. Reg. Meet., Society of Petroleum Engineers; 1975. https://doi.org/10.2118/5347-MS.

  56. Kirtley JR. Nitrogen from cryogenic air separation process to be used for pressure maintenance and to enhance recovery at Cantarell complex in Campeche Bay, Mexico. In: Offshore Technol. Conf., Offshore Technology Conference; 1999. https://doi.org/10.4043/10864-MS.

  57. Stewart FM, Garthwaite DL, Karebill FK. Pressure maintenance by inert gas injection in the high Relife Elk Basin Field 1955; 204.

    Google Scholar 

  58. Thomas L, Dixon TN, Pierson RG, Hermansen H. Ekofisk nitrogen injection SPE Form Eval. 1991;6:151–60. https://doi.org/10.2118/19839-PA.

    Article  Google Scholar 

  59. Zaman K, el Moemen MA. Energy consumption, carbon dioxide emissions and economic development: evaluating alternative and plausible environmental hypothesis for sustainable growth. Renew Sustain Energy Rev. 2017;74:1119–30. https://doi.org/10.1016/j.rser.2017.02.072.

    Article  Google Scholar 

  60. Benson SM, Orr FM Jr. Carbon dioxide capture and storage. MRS Bull. 2008;33:303–5. https://doi.org/10.1557/mrs2008.63.

    Article  Google Scholar 

  61. Law DH-S. Disposal of carbon dioxide, a greenhouse gas, for pressure maintenance in a steam-based thermal process for recovery of heavy oil and bitumen. SPE Int. Therm. Oper. Heavy Oil Symp. West. Reg. Meet., Society of Petroleum Engineers; 2004. https://doi.org/10.2118/86958-MS.

  62. Zheng S, Li H, Yang D. Pressure maintenance and improving oil recovery with CO2 injection in heavy oil reservoirs. Wire 2011; 2.

    Google Scholar 

  63. Zheng S, Li H, Yang D. Pressure maintenance and improving oil recovery with immiscible CO2 injection in thin heavy oil reservoirs. J Pet Sci Eng. 2013;112:139–52.

    Article  Google Scholar 

  64. Pourhadi S, Fath AH. Performance of the injection of different gases for enhanced oil recovery in a compositionally grading oil reservoir. J Pet Explor Prod Technol. 2020;10:641–61.

    Article  Google Scholar 

  65. Bird RB, Stewart WE, Lightfoot EN, Meredith RE. Transport phenomena. J Electrochem Soc. 1961;108:78C.

    Article  Google Scholar 

  66. Cussler EL, Cussler EL. Diffusion: mass transfer in fluid systems. Cambridge university press; 2009.

    Google Scholar 

  67. Chukwuma FO. Mass transfer of gaseous carbon dioxide into a quiescent liquid hydrocarbon. University of Tulsa [Oklahoma]; 1983.

    Google Scholar 

  68. Bird RB, Stewart WE, Lightfoot EN. Transport phenomena, 2nd edition (2002) n.d.

    Google Scholar 

  69. Da Silva FV, Belery P. Molecular diffusion in naturally fractured reservoirs: a decisive recovery mechanism. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1989.

    Google Scholar 

  70. Sigmund PM. Prediction of molecular diffusion at reservoir conditions. Part II-estimating the effects of molecular diffusion and convective mixing in multicomponent systems. J Can Pet Technol 1976; 15.

    Google Scholar 

  71. Unver AA, Himmelblau DM. Diffusion coefficients of CO2, C2H4, C3H6 and C4H8 in Water from 6 to 65 C. J Chem Eng Data. 1964;9:428–31.

    Article  Google Scholar 

  72. Thomas WJ, Adams MJ. Measurement of the diffusion coefficients of carbon dioxide and nitrous oxide in water and aqueous solutions of glycerol. Trans Faraday Soc. 1965;61:668–73.

    Article  Google Scholar 

  73. Grogan AT, Pinczewski WV. The role of molecular diffusion processes in tertiary CO2 flooding. J Pet Technol. 1987;39:591–602.

    Article  Google Scholar 

  74. Campbell BT, Orr FM Jr. Flow visualization for CO2/crude-oil displacements. Soc Pet Eng J. 1985;25:665–78.

    Article  Google Scholar 

  75. Amyx J, Bass D, Whiting RL. Petroleum reservoir engineering physical properties; 1960.

    Google Scholar 

  76. Langnes GL, Robertson Jr JO, Chilingar G V. Secondary recovery and carbonate reservoirs; 1972.

    Google Scholar 

  77. Stewart FM, Garthwaite DL, Karebill FK. Pressure maintenance by inert gas injection in the high relief elk basin field 1955; 204.

    Google Scholar 

  78. Kelly P, Kennedy SL. Thirty years of effective pressure maintenance by gas injection in the Hilbig field. J Pet Technol. 1965;17:279–81. https://doi.org/10.2118/946-PA.

    Article  Google Scholar 

  79. Cotter WH. Twenty-three years of gas injection into a highly undersaturated crude reservoir. J Pet Technol. 1962;14:361–5.

    Article  Google Scholar 

  80. Wei MH, Yu JP, Moore DM, Ezekwe N, Querin ME, Williams LL. Case history of pressure maintenance by Crestal gas injection in the 26R gravity drainage reservoir. In: SPE West. Reg. Meet., Society of Petroleum Engineers; 1992. https://doi.org/10.2118/24035-MS.

  81. van Wingen N, Barton CW, Case CH. Coalinga nose pressure maintenance project. J Pet Technol. 1973;25:1147–52. https://doi.org/10.2118/4183-PA.

    Article  Google Scholar 

  82. Waller RL. The Northwest Avard pressure maintenance project. J Pet Technol. 1971;23:1074–80. https://doi.org/10.2118/3156-PA.

    Article  Google Scholar 

  83. Babson EC. A review of gas injection projects in California. SPE Calif. Reg. Meet.: Society of Petroleum Engineers; 1989.

    Book  Google Scholar 

  84. McQuillan H. Fracture-controlled production from the Oligo-Miocene Asmari Formation in Gachsaran and Bibi Hakimeh fields, southwest Iran. Carbonate Pet. Reserv.: Springer; 1985. p. 511–23.

    Google Scholar 

  85. Saidi AM. Twenty years of gas injection history into well-fractured Haft Kel Field (Iran). In: Int. Pet. Conf. Exhib. Mex., Society of Petroleum Engineers; 1996. https://doi.org/10.2118/35309-MS.

  86. Vowel WR. Gas injection in Eastern Venezuela field increases oil recovery. J Pet Technol. 1958;10:31–3.

    Article  Google Scholar 

  87. Schilthuis RJ. Active oil and reservoir energy. Trans AIME. 1936;118:33–52. https://doi.org/10.2118/936033-G.

    Article  Google Scholar 

  88. Muskat M. Physical principles of oil production. McGraw-Hill Book Co.; 1949.

    Google Scholar 

  89. Havlena D, Odeh AS. The material balance as an equation of a straight line. J Pet Technol. 1963;15:896–900. https://doi.org/10.2118/559-PA.

    Article  Google Scholar 

  90. Sandrea R, Nielsen RF. Combination drive predictions by the Muskat and differential tracy material balances using various empirical relations and theoretical saturation equations. J Can Pet Technol. 1969;8:98–104. https://doi.org/10.2118/69-03-04.

    Article  Google Scholar 

  91. van Golf-Racht TD. Fundamentals of fractured reservoir engineering. vol. 12. Elsevier; 1982.

    Google Scholar 

  92. Hinkley RE, Davis LA. Capillary pressure discontinuities and end effects in homogeneous composite cores: effect of flow rate and wettability. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1986.

    Google Scholar 

  93. Willhite GP. Waterflooding, vol. 3. Richardson, Texas Textb Ser SPE; 1986.

    Google Scholar 

  94. Dindoruk B, Firoozabadi A. Computation of gas-liquid drainage in fractured porous media recognizing fracture liquid flow. Annu. Tech. Meet.: Petroleum Society of Canada; 1994.

    Book  MATH  Google Scholar 

  95. Firoozabadi A, Hauge J. Capillary pressure in fractured porous media (includes associated papers 21892 and 22212). J Pet Technol. 1990;42:784–91.

    Article  Google Scholar 

  96. Rangel-German ER, Kovscek AR. Microvisual analysis of matrix-fracture interaction. SPE Int. Pet. Conf. Mex.: Society of Petroleum Engineers; 2004.

    Book  Google Scholar 

  97. Witherspoon PA, Wang JSY, Iwai K, Gale JE. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res. 1980;16:1016–24.

    Article  Google Scholar 

  98. McDonald AE, Beckner BL, Chan HM, Jones TA, Wooten SO. Some important considerations in the simulation of naturally fractured reservoirs. Low Permeability Reserv. Symp.: Society of Petroleum Engineers; 1991.

    Book  Google Scholar 

  99. Jones TA, Wooten SO, Kaluza TJ. Single-phase flow through natural fractures. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1988.

    Book  Google Scholar 

  100. Saidi AM, Tehrani DH, Wit K. PD 10 (3) mathematical simulation of fractured reservoir performance, based on physical model experiments. 10th World Pet. Congr., World Petroleum Congress; 1979.

    Google Scholar 

  101. Horie T, Firoozabadi A, Ishimoto K. Laboratory studies of capillary interaction in fracture/matrix systems. SPE Reserv Eng. 1990;5:353–60.

    Article  Google Scholar 

  102. Saidi AM. Discussion of capillary-pressure in fractured porous-media. J Pet Technol. 1991;43:233–5.

    Google Scholar 

  103. Saidi AM. Reservoir engineering of fractured reservoirs (fundamental and Practical Aspects). Total; 1987.

    Google Scholar 

  104. Sajadian VA, Danesh A, Tehrani DH. Laboratory studies of gravity drainage mechanism in fractured carbonate reservoir-capillary continuity. Abu Dhabi Int. Pet. Exhib. Conf.: Society of Petroleum Engineers; 1998.

    Book  Google Scholar 

  105. Firoozabadi A, Ottesen B, Mikklesen M. Measurements of supersaturation and critical gas saturation (includes associated papers 27920 and 28669). SPE Form Eval. 1992;7:337–44. https://doi.org/10.2118/19694-PA.

    Article  Google Scholar 

  106. Kazemi H, Merrill LS Jr, Porterfield KL, Zeman PR. Numerical simulation of water-oil flow in naturally fractured reservoirs. Soc Pet Eng J. 1976;16:317–26.

    Article  Google Scholar 

  107. Saidi AM, Sakthikumar S. Gas gravity drainage under secondary and tertiary conditions in fractured reservoirs. Middle East Oil Show: Society of Petroleum Engineers; 1993.

    Book  Google Scholar 

  108. Labastie A. Capillary continuity between blocks of a fractured reservoir. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1990.

    Book  Google Scholar 

  109. Festoy S, Golf-Racht V. Gas gravity drainage in fractured reservoirs through new dual-continuum approach (includes associated papers 20296 and 20390). SPE Reserv Eng. 1989;4:271–8.

    Article  Google Scholar 

  110. Thomas LK, Dixon TN, Pierson RG. Fractured reservoir simulation SPE J. 1983;23:42–54. https://doi.org/10.2118/9305-PA.

    Article  Google Scholar 

  111. Fung LSK, Collins DA. An evaluation of the improved dual porosity model for the simulation of gravity effects in naturally fractured reservoirs. J Can Pet Technol 1991; 30.

    Google Scholar 

  112. Coats KH, Nielsen RL, Terhune MH, Weber AG. Simulation of three-dimensional, two-phase flow in oil and gas reservoirs. Soc Pet Eng J. 1967;7:377–88.

    Article  Google Scholar 

  113. Boerrigter P, Maas JG, de Vries A. A fractured reservoir simulator capable of modeling block-block interaction. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1989.

    Google Scholar 

  114. Coats KH. Implicit compositional simulation of single-porosity and dual-porosity reservoirs. SPE Symp. Reserv. Simul.: Society of Petroleum Engineers; 1989.

    Book  Google Scholar 

  115. Vidal J. Gas/oil gravity drainage: laboratory study of oil reimbibition and streaming between stacked matrix blocks. Eur. Pet. Conf.: Society of Petroleum Engineers; 1992.

    Google Scholar 

  116. Cardwell WT Jr, Parsons RL. Gravity drainage theory Trans AIME. 1949;179:199–215. https://doi.org/10.2118/949199-G.

    Article  Google Scholar 

  117. Firoozabadi A, Ishimoto K, Dindoruk B. Theory of reinfiltration in fractured porous media: part I-one-dimensional model. Pap SPE. 1991;21796:20–2.

    Google Scholar 

  118. Tan JCT, Firoozabadi A. Dual-porosity simulation incorporating reinfiltration and capillary continuity concepts part i: single gridcell. SPE Reserv. Simul. Symp.: Society of Petroleum Engineers; 1995.

    Book  Google Scholar 

  119. Horie T, Firoozabadi A, Ishimoto K. Capillary continuity in fractured reservoirs SPE. 1988;18282:2–5.

    Google Scholar 

  120. Le Gallo Y, Le Romancer JF, Bourbiaux B, Fernandes G. Mass transfer in fractured reservoirs during gas injection: experimental and numerical modeling. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1997.

    Google Scholar 

  121. Qasem FH, Ershaghi I. Optimizing gas injection into naturally fractured reservoirs. SPE Lat. Am. Pet. Eng. Conf.: Society of Petroleum Engineers; 1994.

    Book  Google Scholar 

  122. Eica AS, Ershaghi I. Modeling of gas injection in fractured reservoirs. SPE Calif. Reg. Meet.: Society of Petroleum Engineers; 1982.

    Book  Google Scholar 

  123. Yamamoto RH, Padgett JB, Ford WT, Boubeguira A. Compositional reservoir simulator for fissured systems—the single-block model. Soc Pet Eng J. 1971;11:113–28. https://doi.org/10.2118/2666-PA.

    Article  Google Scholar 

  124. Dykstra H. The prediction of oil recovery by gravity drainage. J Pet Technol. 1978;30:818–30.

    Article  Google Scholar 

  125. Schechter DS, Guo B. Mathematical modeling of gravity drainage after gas injection into fractured reservoirs. Permian Basin Oil Gas Recover. Conf.: Society of Petroleum Engineers; 1996.

    Book  Google Scholar 

  126. Nenniger E Jr, Storrow JA. Drainage of packed beds in gravitational and centrifugal-force fields. AIChE J. 1958;4:305–16.

    Article  Google Scholar 

  127. Pavone D, Bruzzi P, Verre R. Gravity drainage at low IFT. Gravity Drain. low IFT. In: 5th Eur. Symp. Enhanc. Oil Recover. Budapest; 1989.

    Google Scholar 

  128. Luan Z-A. Some theoretical aspects of gravity drainage in naturally fractured reservoirs. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1994.

    Book  Google Scholar 

  129. Aronofsky JS, Masse L, Natanson SG. A model for the mechanism of oil recovery from the porous matrix due to water invasion in fractured reservoirs. Trans AIME. 1958;213:17–9.

    Article  Google Scholar 

  130. Martin JC. Reservoir analysis for pressure maintenance operations based on complete segregation of mobile fluids v v ; 1958.

    Google Scholar 

  131. Maryam H, Reza A, Rouhollah F, Sohrab Z. New insights into forced and free fall gravity drainage performance in a fractured physical model. J Pet Sci Eng. 2021.

    Google Scholar 

  132. Morel DD, Bourbiaux B, Latil M, Thiebot B. diffusion effects in gas-flooded light oil fractured reservoir. Paper SPE 20516 presented at the 65th Annual Technical Conf. and Exh. New Orleans; 1990. p. 23–6.

    Google Scholar 

  133. Renner TA. Measurement and correlation of diffusion coefficients for CO2 and rich-gas applications. SPE Reserv Eng. 1988;3:517–23.

    Article  Google Scholar 

  134. Thiebot BM, Sakthikumar SS. Cycling fractured reservoirs containing volatile oil: laboratory investigation of the performance of lean gas or nitrogen injection. Middle East Oil Show: Society of Petroleum Engineers; 1991.

    Google Scholar 

  135. Le Romancer JF, Defives D, Kalaydjian F, Fernandes G. Influence of the diffusing gas on the mechanism of oil recovery by gas diffusion in fractured reservoir. IEA Collab. Proj. Enhanc. Oil Recover. Work. Symp. Bergen, Norw.; 1994. p. 28–31.

    Google Scholar 

  136. Le Romancer JF, Fernandes G. Mechanism of oil recovery by gas diffusion in fractured reservoir in presence of water. SPE/DOE Improv. Oil Recover. Symp.: Society of Petroleum Engineers; 1994.

    Book  Google Scholar 

  137. Riazi MR, Whitson CH, Da Silva F. Modelling of diffusional mass transfer in naturally fractured reservoirs. J Pet Sci Eng. 1994;10:239–53.

    Article  Google Scholar 

  138. Darvish GR, Lindeberg EGB, Holt T, Kleppe J, Utne SA. Reservoir conditions laboratory experiments of CO2 injection into fractured cores. SPE Eur. Annu. Conf. Exhib.: Society of Petroleum Engineers; 2006.

    Google Scholar 

  139. Karimaie H. Aspects of water and gas injection in fractured reservoirs; 2007.

    Google Scholar 

  140. Thomas LK, Dixon TN, Pierson RG, Hermansen H. Ekofisk nitrogen injection. SPE Form Eval. 1991; 6:151–60. https://doi.org/10.2118/19839-PA.

  141. Hu H, Whitson CH, Qi Y. A study of recovery mechanisms in a nitrogen diffusion experiment. In: IOR 1991–6th Eur. Symp. Improv. Oil Recover., European Association of Geoscientists & Engineers; 1991. p. cp-44.

    Google Scholar 

  142. Fayers FJ, Lee S-T. Crossflow mechanisms by gas drive in hetergeneous reservoirs. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1992.

    Book  Google Scholar 

  143. Lenormand R, Le Romancer JF, Le Gallo Y, Bourbiaux B. Modeling the diffusion flux between matrix and fissure in a fissured reservoir. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 1998.

    Book  Google Scholar 

  144. Hoteit H, Firoozabadi A. Numerical modeling of diffusion in fractured media for gas injection and recycling schemes. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 2006.

    Book  Google Scholar 

  145. Alavian SA, Whitson CH. Modeling CO2 injection in a fractured chalk experiment. In: SPE/EAGE Reserv. Charact. Simul. Conf., European Association of Geoscientists & Engineers; 2009. p. cp-170.

    Google Scholar 

  146. Moortgat J, Firoozabadi A, Farshi MM. A new approach to compositional modeling of CO2 injection in fractured media compared to experimental data. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 2009.

    Book  Google Scholar 

  147. Cussler EL. Multicomponent diffusion. Elsevier; 2013.

    Google Scholar 

  148. Firoozabadi A, Ghorayeb K, Shukla K. Theoretical model of thermal diffusion factors in multicomponent mixtures. AIChE J. 2000;46:892–900.

    Article  Google Scholar 

  149. Sigmund PM. Prediction of molecular diffusion at reservoir conditions. Part 1-Measurement and prediction of binary dense gas diffusion coefficients. J Can Pet Technol 1976; 15.

    Google Scholar 

  150. Charbeneau RJ. Groundwater hydraulics and pollutant transport. Waveland Press; 2006.

    Google Scholar 

  151. Green DW, Willhite GP. Enhanced oil recovery, vol. 6. Henry L. Doherty Memorial Fund of AIME: Society of Petroleum Engineers Richardson, TX; 1998.

    Google Scholar 

  152. Lagalaye Y, Nectoux A, James N. Characterization of acid gas diffusion in a carbonate fractured reservoir through experimental studies, numerical simulation and field pilots. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 2002.

    Book  Google Scholar 

  153. Ramirez BA, Kazemi H, Al-Kobaisi M, Ozkan E, Atan S. A critical review for proper use of water-oil-gas transfer functions in dual-porosity naturally fractured reservoirs-part I. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 2007.

    Book  Google Scholar 

  154. Kimbler OK, Caudle BH. Areal sweepout behavior in a nine-spot injection pattern. J Pet Technol. 1964;16:199–202. https://doi.org/10.2118/784-PA.

    Article  Google Scholar 

  155. Dyes AB, Caudle BH, Erickson RA. Oil production after breakthrough as influenced by mobility ratio. J Pet Technol. 1954;6:27–32. https://doi.org/10.2118/309-G.

    Article  Google Scholar 

  156. Aronofsky JS, Ramey HJ. Mobility ratio—its influence on injection or production histories in five-spot water flood. J Pet Technol. 1956;8:205–10. https://doi.org/10.2118/641-G.

    Article  Google Scholar 

  157. Aronofsky JS. Mobility ratio—its influence on flood patterns during water encroachment. J Pet Technol. 1952;4:15–24. https://doi.org/10.2118/132-G.

    Article  Google Scholar 

  158. Craig, Geffen TM, Morse RA, Craig Jr. FF, Geffen TM, Morse RA. Oil recovery performance of pattern gas or water injection operations from model tests. Pet Branch Fall Meet San Antonio. 1955; 204:1–9.

    Google Scholar 

  159. Collings RC, Hild GP, Abidi HR. Pattern modification by injection-well shut-in: a combined cost-reduction and sweep-improvement effort. SPE Reserv Eng. 1996;11:69–72. https://doi.org/10.2118/30730-PA.

    Article  Google Scholar 

  160. Moradi B, Tangsiri Fard J, Rasaei MR, Momeni A, Bagheri MB. Effect of gas recycling on the enhancement of condensate recovery in an Iranian fractured gas/condensate reservoir. Trinidad Tobago Energy Resour. Conf., Society of Petroleum Engineers; 2010. https://doi.org/10.2118/132840-MS.

  161. Dixon PC, Boatright BB. Practical economics of cycling; 1941.

    Google Scholar 

  162. Prats HF. The application of numerical methods to cycling and flooding problems. 3rd World Pet Congr; 1951.

    Google Scholar 

  163. Latil M. Enhanced oil recovery. Éditions Technip; 1980.

    Google Scholar 

  164. Fung L-K. Numerical simulation of naturally fractured reservoirs. Middle East Oil Show: Society of Petroleum Engineers; 1993.

    Book  Google Scholar 

  165. Odeh AS. Comparison of solutions to a three-dimensional black-oil reservoir simulation problem (includes associated paper 9741). J Pet Technol. 1981;33:13–25. https://doi.org/10.2118/9723-PA.

    Article  Google Scholar 

  166. Behie A, Vinsome PKW. Block iterative methods for fully implicit reservoir simulation. Soc Pet Eng J 1982; 22:658–68. https://doi.org/10.2118/9303-PA.

  167. Bansal PP, McDonald AE, Moreland EE, Trimble RH. A strongly coupled, fully implicit, three dimensional, three phase reservoir simulator. In: SPE Annu. Tech. Conf. Exhib., Society of Petroleum Engineers; 1979. https://doi.org/10.2118/8329-MS.

  168. Kazemi H, Gilman JR, Elsharkawy AM. Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfer functions (includes associated papers 25528 and 25818). SPE Reserv Eng. 1992;7:219–27.

    Article  Google Scholar 

  169. Pruess K, Narasimhan TN. A practical method for modeling fluid and heat flow in fractured porous media; 1982.

    Google Scholar 

  170. Lie K-A. An introduction to reservoir simulation using MATLAB; 2016.

    Google Scholar 

  171. Shah S, Møyner O, Tene M, Lie K-A, Hajibeygi H. The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB). J Comput Phys. 2016;318:36–57. https://doi.org/10.1016/j.jcp.2016.05.001.

    Article  MathSciNet  MATH  Google Scholar 

  172. Monteagudo JEP, Firoozabadi A. Control‐volume method for numerical simulation of two‐phase immiscible flow in two‐and three‐dimensional discrete‐fractured media. Water Resour Res. 2004; 40.

    Google Scholar 

  173. Hoteit H, Firoozabadi A. Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media. Water Resour Res. 2005; 41.

    Google Scholar 

  174. Lake LW, Carey GF, Pope GA, Sepehrnoori K. Isothermal, multiphase, multicomponent fluid flow in permeable media. In Situ;(United States) 1984; 8.

    Google Scholar 

  175. Young LC, Stephenson RE. A generalized compositional approach for reservoir simulation. Soc Pet Eng J. 1983;23:727–42.

    Article  Google Scholar 

  176. Coats KH. SPE 8284 an equation of state compositional model; 1980.

    Google Scholar 

  177. Fussell LT, Fussell DD. An iterative technique for compositional reservoir models. Soc Pet Eng J. 1979;19:211–20. https://doi.org/10.2118/6891-PA.

    Article  Google Scholar 

  178. Roebuck IF Jr, Henderson GE, Douglas J Jr, Ford WT. The compositional reservoir simulator: case I-the linear model. Soc Pet Eng J. 1969;9:115–30.

    Article  Google Scholar 

  179. Roebuck IF Jr, Ford WT, Henderson GE, Douglas J Jr. The compositional reservoir simulator. Case IV The Two-Dimensional Model. Fall Meet. Soc. Pet. Eng. AIME: Society of Petroleum Engineers; 1968.

    Google Scholar 

  180. Kazemi H, Vestal CR, Shank DG. An efficient multicomponent numerical simulator. Soc Pet Eng J. 1978;18:355–68.

    Article  Google Scholar 

  181. Nghiem LX, Fong DK, Aziz K. Compositional modeling with an equation of state (includes associated papers 10894 and 10903). Soc Pet Eng J. 1981;21:687–98.

    Article  Google Scholar 

  182. Coats KH, Thomas LK, Pierson RG. Compositional and black oil reservoir simulation. SPE Reserv. Simul. Symp.: Society of Petroleum Engineers; 1995.

    Book  Google Scholar 

  183. Coats KH, Thomas LK, Pierson RG. Compositional and black oil reservoir simulation. SPE Reserv Eval Eng. 1998;1:372–9. https://doi.org/10.2118/50990-PA.

    Article  Google Scholar 

  184. Wang P, Yotov I, Wheeler M, Arbogast T, Dawson C, Parashar M, et al. A new generation EOS compositional reservoir simulator: Part I-formulation and discretization. SPE Reserv. Simul. Symp.: Society of Petroleum Engineers; 1997.

    Google Scholar 

  185. Buchwalter JL. A new simplified compositional simulator; 1994.

    Google Scholar 

  186. Thiele KJ, Lake LW, Sepehrnoori KA. A comparison of three equation of state compositional simulator. In: Proceeding 7th SPE Symp. Reserv. Simulation, San Fr. CA, Nov;1983. p. 16–8.

    Google Scholar 

  187. Cao H, Aziz K. Performance of IMPSAT and IMPSAT-AIM models in compositional simulation. SPE Annu. Tech. Conf. Exhib.: Society of Petroleum Engineers; 2002.

    Book  Google Scholar 

  188. Haukas J, Aavatsmark I, Espedal M, Reiso E. A comparison of two different impsat models in compositional simulation. SPE J. 2007;12:145–51.

    Article  Google Scholar 

  189. Hashem YKS. Explicit composition implicit pressure and saturation simulation of dual-porosity/permeability reservoirs; 1999.

    Google Scholar 

  190. Quandalle P, Savary D. An implicit in pressure and saturations approach to fully compositional simulation. SPE Symp. Reserv. Simul.: Society of Petroleum Engineers; 1989.

    Book  Google Scholar 

  191. Rodriguez F, Galindo-Nava A. A general formulation for compositional reservoir simulation. Int. Pet. Conf. Exhib. Mex.: Society of Petroleum Engineers; 1994.

    Book  Google Scholar 

  192. Branco CM, Rodriguez F. A semi-implicit formulation for compositional reservoir simulation. SPE Adv Technol Ser. 1996;4:171–7.

    Article  Google Scholar 

  193. Arana O. Diffusion and convective mixing of components in naturally fractured reservoirs; 2003.

    Google Scholar 

  194. Mansoori J. Discussion of compositional modeling with an equation of state. Soc Pet Eng J. 1982;22:202–3.

    Google Scholar 

  195. Watts JW. A compositional formulation of the pressure and saturation equations. SPE Reserv Eng. 1986;1:243–52.

    Article  Google Scholar 

  196. Manzocchi T, Carter JN, Skorstad A, Fjellvoll B, Stephen KD, Howell JA, et al. Sensitivity of the impact of geological uncertainty on production from faulted and unfaulted shallow-marine oil reservoirs: objectives and methods. Pet Geosci. 2008;14:3–15. https://doi.org/10.1144/1354-079307-790.

    Article  Google Scholar 

  197. Griewank A, Walther A. Evaluating derivatives : principles and techniques of algorithmic differentiation, 2nd ed. Society for Industrial and Applied Mathematics; 2008.

    Google Scholar 

  198. Matthews JD, Carter JN, Stephen KD, Zimmerman RW, Skorstad A, Manzocchi T, et al. Assessing the effect of geological uncertainty on recovery estimates in shallow-marine reservoirs: the application of reservoir engineering to the SAIGUP project. Pet Geosci. 2008;14:35–44. https://doi.org/10.1144/1354-079307-791.

    Article  Google Scholar 

  199. Leuangthong O, Deutsch CV. Geostatistics Banff. 2004;1:2004.

    Google Scholar 

  200. Warren JE, Skiba FF, Price HS. An evaluation of the significance of permeability measurements. J Pet Technol. 1961;13:739–44. https://doi.org/10.2118/1641-G-PA.

    Article  Google Scholar 

  201. Killough JE, Kossack CA. Fifth comparative solution project: evaluation of miscible flood simulators. SPE Symp. Reserv. Simul., Society of Petroleum Engineers; 1987. https://doi.org/10.2118/16000-MS.

  202. Appleyard JR. Nested factorization. In: Proc. SPE Reserv. Simul. Symp., Society of Petroleum Engineers; 1983. p. 315–24. https://doi.org/10.2523/12264-MS.

  203. Fan L, Harris B, Jamaluddin A. Understanding gas-condensate reservoirs. Oilf Rev 2005; 14–27. https://doi.org/10.4043/25710-MS.

  204. Thomas F, Bennion D, Andersen G. Gas condensate reservoir performance. J Can Pet Technol. 2009;48:18–24. https://doi.org/10.2118/09-07-18.

    Article  Google Scholar 

  205. Loomis AG, Shea GB. Secondary recovery of oil in California. World Pet. Congr.; 1943.

    Google Scholar 

  206. Cook AB, Coulter RH, Spencer GB, Chin T, Elliott WC. Secondary recovery from semidepleted oil reservoirs converted to gas-storage operations. Conf. gas supply, Transm. Storage, Chicago, IL, USA, 10 May 1956; 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Azin .

Editor information

Editors and Affiliations

Appendices

Appendices

5.1.1 Appendix A: Derivation of the Multiphase Flow Equations in Compositional Simulation

The multiphase flow equations govern compositional simulation will be derived. Basically, these equations are continuity equations for each component cover a volume element ΔxΔyΔz fixed in the space (Fig. 5.30) as following:

$$\begin{aligned} & \left( {Molar\;rate\;of\;component\;c\;in} \right) - \left( {Molar\;rate\;of\;component\;c\;out} \right) \\ &\quad +\left( {Molar\;injection\;rate\;of\;component\;c} \right) \\&\quad- \left( {Molar\;production\;rate\;of\;component\;c} \right) \\ &\quad = \left( {Molar\;accumulation\;rate\;of\;component\;c} \right) \\ \end{aligned}$$
(5.136)

Component c can be transported across the volume element boundary by two mechanisms: diffusion and convection. These mechanisms, injection rate, production rate, and accumulation rate will be discussed in details next.

Fig. 5.30
figure 30

Volume element for deriving the multiphase flow equations

5.1.1.1 Convection Mechanism

Convective transport is the amount of material carried along by the bulk movement of the fluid. The driving force in convective transport is potential gradient. The molar rate in minus molar rate out of component c (mole/time) for x, y, and z directions due to convective transport in oil and gas phases are:

$$\begin{aligned} & \left( {\rho_{o} x_{c} v_{o,x} } \right)_{x} \Delta y\Delta z + \left( {\rho_{g} x_{c} v_{g,x} } \right)_{x} \Delta y\Delta z \\ & \;\; - \left( {\rho_{o} x_{c} v_{o,x} } \right)_{x + \Delta x} \Delta y\Delta z - \left( {\rho_{g} x_{c} v_{g,x} } \right)_{x + \Delta x} \Delta y\Delta z \\ & + \left( {\rho_{o} x_{c} v_{o,y} } \right)_{y} \Delta x\Delta z + \left( {\rho_{g} x_{c} v_{g,y} } \right)_{y} \Delta x\Delta z \\ & \;\; - \left( {\rho_{o} x_{c} v_{o,y} } \right)_{y + \Delta y} \Delta x\Delta z - \left( {\rho_{g} x_{c} v_{g,y} } \right)_{y + \Delta y} \Delta x\Delta z \\ & + \left( {\rho_{o} x_{c} v_{o,z} } \right)_{z} \Delta x\Delta y + \left( {\rho_{g} x_{c} v_{g,y} } \right)_{z} \Delta x\Delta y \\ & \;\; - \left( {\rho_{o} x_{c} v_{o,z} } \right)_{z + \Delta z} \Delta x\Delta y - \left( {\rho_{g} x_{c} v_{g,z} } \right)_{z + \Delta z} \Delta x\Delta y = 0 \\ \end{aligned}$$
(5.137)

where

$$\vec{v}_{p} = - \frac{{kk_{rp} }}{{\mu_{p} }}\left( {\overrightarrow {\nabla } p_{p} - \gamma_{p} \overrightarrow {\nabla } D} \right)\quad \quad \quad p = oil\;and\;gas$$
(5.138)
  • \(\rho_{o}\) and \(\rho_{g}\) are the molar densities of oil and gas.

  • ϕ is the porosity of the volume element.

  • xc is the mole fraction of component c in the oil phase.

  • yc is the mole fraction of component c in the gas phase.

5.1.1.2 Diffusion (Molecular) Transport

Molecular transport, or diffusion, can also add material across the faces of the volume element. If No,c and Ng,c are the diffusion molar fluxes of component c (mole c per time per area) in oil and gas phases, these quantities have units of mole per area per time and represent the amount of transport by diffusion. Therefore, following the previous approach, the molar rate in minus molar rate out of component c for x, y, and z directions by diffusion are:

$$\begin{aligned} & \left( {N_{c,o,x} } \right)_{x} \Delta y\Delta z + \left( {N_{c,g,x} } \right)_{x} \Delta y\Delta z - \left( {N_{c,o,x} } \right)_{x + \Delta x} \Delta y\Delta z\\&\quad - \left( {N_{c,g,x} } \right)_{x + \Delta x} \Delta y\Delta z + \left( {N_{c,o,y} } \right)_{y} \Delta x\Delta z + \left( {N_{c,g,y} } \right)_{y} \Delta x\Delta z\\&\quad - \left( {N_{c,o,y} } \right)_{y + \Delta y} \Delta x\Delta z - \left( {N_{c,g,y} } \right)_{y + \Delta y} \Delta x\Delta z \\ & \quad+ \left( {N_{c,o,z} } \right)_{z} \Delta x\Delta y + \left( {N_{c,g,z} } \right)_{z} \Delta x\Delta y \\&\quad- \left( {N_{c,o,z} } \right)_{z + \Delta z} \Delta x\Delta y - \left( {N_{c,g,z} } \right)_{z + \Delta z} \Delta x\Delta y = 0 \\ \end{aligned}$$
(5.139)

where

$$N_{c,o} = \phi \rho_{o} S_{o} \left( {D_{c,o} \nabla x_{c} } \right)$$
(5.140)
$$N_{c,g} = \phi \rho_{g} S_{g} \left( {D_{c,g} \nabla y_{c} } \right)$$
(5.141)

5.1.1.3 Production or Injection

Finally, production and/or injection of component c into the volume element are given by:

$$q_{D,fm,c} + q_{C,fm,c}$$
(5.142)

where \(q_{D,fm}\) and \(q_{C,fm}\) are diffusion and convection mass transfer between matrix and fracture at the matrix-fracture boundary.

5.1.1.4 Accumulation

The total mole of fluid in the volume element at any time is \(\phi \left( {\rho_{o} S_{o} + \rho_{g} S_{g} } \right)\Delta x\Delta y\Delta z\), and the mole of component c is \(\phi \left( {\rho_{o} S_{o} x_{c} + \rho_{g} S_{g} y_{c} } \right)\Delta x\Delta y\Delta z\). Therefore, the rate of accumulation of mole of component c is:

$$\frac{\partial }{\partial t}\left[ {\phi \left( {\rho_{o} S_{o} x_{c} + \rho_{g} S_{g} y_{c} } \right)} \right]\Delta x\Delta y\Delta z$$
(5.143)

5.1.1.5 Flow Equations

The flow equations can be obtained by substituting Eqs. (5.137) to (5.143) into Eq. (5.136). If the resulting equations are divided by volume element \(\Delta x\Delta y\Delta z\) and applying limit when the volume element goes to zero, it becomes:

$$\begin{aligned} & - \left[ {\frac{{\partial \left( {\rho_{o} x_{c} v_{o,x} + \rho_{g} y_{c} v_{g,x} } \right)}}{\partial x} + \frac{{\partial \left( {\rho_{o} x_{c} v_{o,y} + \rho_{g} y_{c} v_{g,y} } \right)}}{\partial y} + \frac{{\partial \left( {\rho_{o} x_{c} v_{o,z} + \rho_{g} y_{c} v_{g,z} } \right)}}{\partial z}} \right] \\ &\,\,\,\, - \left[ {\frac{{\partial \left( {N_{c,o,x} + N_{c,g,x} } \right)}}{\partial x} + \frac{{\partial \left( {N_{c,o,y} + N_{c,g,y} } \right)}}{\partial y} + \frac{{\partial \left( {N_{c,o,z} + N_{c,g,z} } \right)}}{\partial z}} \right] \\ &\,\,\,\,+ q_{D,fm,c} + q_{C,fm,c} = \frac{\partial }{\partial t}\left[ {\phi \left( {\rho_{o} S_{o} x_{c} + \rho_{g} S_{g} y_{c} } \right)} \right] \\ \end{aligned}$$
(5.144)

Or, in vector notation,

$$\begin{aligned} & - \nabla . \left( {\rho_{o} x_{c} v_{o} + \rho_{g} y_{c} v_{g} } \right) - \nabla . \left( {N_{c,o} + N_{c,g} } \right) + q_{D,fm,c} + q_{C,fm,c} \\ & = \frac{\partial }{\partial t}\left[ {\phi \left( {\rho_{o} S_{o} x_{c} + \rho_{g} S_{g} y_{c} } \right)} \right] \\ \end{aligned}$$
(5.145)

By substituting vo and vg from Eq. (5.138) and Nc,o and Nc,g from Eqs. (5.140) and (5.141) into Eq. (5.145), it becomes:

$$\begin{aligned} & \nabla . \left( {\rho_{o} x_{c} \frac{{kk_{ro} }}{{\mu_{o} }}\left( {\overrightarrow {\nabla } p_{o} - \gamma_{o} \overrightarrow {\nabla } D} \right) + \rho_{g} y_{c} \frac{{kk_{rg} }}{{\mu_{g} }}\left( {\overrightarrow {\nabla } p_{g} - \gamma_{g} \overrightarrow {\nabla } D} \right)} \right) \\ & + \nabla . \left( {\phi \rho_{o} S_{o} \left( {D_{c,o} \nabla x_{c} } \right) + \phi \rho_{g} S_{g} \left( {D_{c,g} \nabla y_{c} } \right)} \right) + q_{D,fm,c} + q_{C,fm,c} \\ & \; = \frac{\partial }{\partial t}\left[ {\phi \left( {\rho_{o} S_{o} x_{c} + \rho_{g} S_{g} y_{c} } \right)} \right] \\ \end{aligned}$$
(5.146)

Equation (5.146) is a general case of compositional multiphase flow through porous media for each component in oil and gas phases. For the water phase, considering that hydrocarbon phases are immiscible in water, we have,

$$\nabla . \left( {\rho_{w} \frac{{kk_{rw} }}{{\mu_{w} }}\left( {\overrightarrow {\nabla } p_{w} - \gamma_{w} \overrightarrow {\nabla } D} \right)} \right) = \frac{\partial }{\partial t}\left[ {\phi \left( {\rho_{w} S_{w} } \right)} \right].$$
(5.147)

5.1.2 Appendix B: Discretizing the Flow Equations

The final form of the general hydrocarbon flow equations, as obtained in Appendix A (Eq. (5.147)), is as follows:

$$\begin{array}{*{20}l} &{ \nabla \cdot \left( {\rho _{o} x_{c} \frac{{kk_{{ro}} }}{{\mu _{o} }}\left( {\vec{\nabla }p_{o} - \gamma _{o} \vec{\nabla }D} \right) + \rho _{g} y_{c} \frac{{kk_{{rg}} }}{{\mu _{g} }}\left( {\vec{\nabla }p_{g} - \gamma _{g} \vec{\nabla }D} \right)} \right)_{{i,j,k}}^{{n + 1}} } \hfill \\ &{ \; + \nabla \cdot \left( {\phi \rho _{o} S_{o} \left( {D_{{c,o}} \nabla x_{c} } \right) + \phi \rho _{g} S_{g} \left( {D_{{c,g}} \nabla y_{c} } \right)} \right)_{{i,j,k}}^{{n + 1}} } \hfill \\ &{ \; + \nabla \cdot \left( {q_{{D,fm,c}} + q_{{C,fm,c}} } \right)_{{i,j,k}}^{{n + 1}} \frac{\partial }{{\partial t}}\left[ {\phi \left( {\rho _{o} S_{o} x_{c} + \rho _{g} S_{g} y_{c} } \right)} \right]_{{i,j,k}}^{{n + 1}} } \hfill \\ \end{array} \;c = 1,2, \ldots ,n_{c}$$
(5.148)

For simplicity, flow equations are discretized in x-direction only. The same procedure can be applied to y and z directions. Equation (5.148) in x-direction becomes:

$$\begin{aligned} & \frac{\partial }{\partial x}\left( {\rho_{o} x_{c} \frac{{kk_{ro} }}{{\mu_{o} }}\left( {\frac{{\partial p_{o} }}{\partial t} - \gamma_{o} \frac{\partial D}{{\partial t}}} \right) + \rho_{g} y_{c} \frac{{kk_{rg} }}{{\mu_{g} }}\left( {\frac{{\partial p_{g} }}{\partial t} - \gamma_{g} \frac{\partial D}{{\partial t}}} \right)} \right)_{i,j,k}^{n + 1} \\ & + \frac{\partial }{\partial x}\left( {\phi \rho_{o} S_{o} \left( {D_{c,o} \frac{{\partial x_{c} }}{\partial x}} \right) + \phi \rho_{g} S_{g} \left( {D_{c,g} \frac{{\partial y_{c} }}{\partial x}} \right)} \right)_{i,j,k}^{n + 1} \\ & + \left( {q_{D,fm,c} + q_{C,fm,c} } \right)_{i,j,k}^{n + 1} \frac{\partial }{\partial t}\left[ {\phi \left( {\rho_{o} S_{o} x_{c} + \rho_{g} S_{g} y_{c} } \right)} \right]_{i,j,k}^{n + 1} \\ \end{aligned}$$
(5.149)

5.1.2.1 Discretization Oil and Gas Convective Terms in x-direction

Defining oil and gas convective terms as:

$$v_{ox} = \rho_{o} x_{c} \frac{{k_{x} k_{ro} }}{{\mu_{o} }}\left( {\frac{{\partial p_{o} }}{\partial x} - \gamma_{o} \frac{\partial D}{{\partial x}}} \right)$$
(5.150)
$$v_{gx} = \rho_{g} y_{c} \frac{{k_{x} k_{rg} }}{{\mu_{g} }}\left( {\frac{{\partial p_{g} }}{\partial x} - \gamma_{g} \frac{\partial D}{{\partial x}}} \right)$$
(5.151)

Oil convective flux term will be discretized first. By substituting Eq. (5.150) into Eq. (5.149), the oil convective flux term in Eq. (5.149) in x-direction becomes:

$$\frac{\partial }{\partial x}\left[ {\rho_{o} x_{c} \frac{{k_{x} k_{ro} }}{{\mu_{o} }}\left( {\frac{{\partial p_{o} }}{\partial x} - \gamma_{o} \frac{\partial D}{{\partial x}}} \right)} \right]_{i,j,k}^{n + 1} = \frac{{\partial v_{{o, x_{i,j,k} }}^{n + 1} }}{\partial x}$$
(5.152)

Using central finite differences into Eq. (5.152):

$$\frac{{\partial v_{{o, x_{i,j,k} }}^{n + 1} }}{\partial x} = \frac{{v_{{o, x_{{i + \frac{1}{2},j,k}} }}^{n + 1} - v_{{o, x_{{i - \frac{1}{2},j,k}} }}^{n + 1} }}{{\Delta x_{i,j,k} }}\quad \quad \quad \Delta x_{i,j,k} = x_{{i + \frac{1}{2},j,k}} - x_{{i - \frac{1}{2},j,k}}$$
(5.153)

where,

$$\begin{array}{*{20}c} {v_{{o,x_{{i + \frac{1}{2},j,k}}^{n + 1} }} = \left( {\rho_{o} x_{c} \frac{{k_{x} k_{ro} }}{{\mu_{o} }}} \right)_{{i + \frac{1}{2},j,k}}^{n + 1} \quad \quad \quad \quad \quad \quad \quad \quad \quad } \\ {\left[ {\frac{{p_{{o_{i + 1,j,k} }} - p_{{o_{i,j,k} }} }}{{\Delta x_{{i + \frac{1}{2},j,k}} }} - \gamma_{{o_{{i + \frac{1}{2},j,k}} }} \frac{{D_{i + 1,j,k} - D_{i,j,k} }}{{\Delta x_{{i + \frac{1}{2},j,k}} }}} \right]^{n + 1} } \\ \end{array} \Delta x_{{i + \frac{1}{2},j,k}} = x_{i + 1,j,k} - x_{i,j,k}$$
(5.154)

and,

$$\begin{aligned} v_{{o,x_{{i - \frac{1}{2},j,k}}^{n + 1} }}& = \left( {\rho_{o} x_{c} \frac{{k_{x} k_{ro} }}{{\mu_{o} }}} \right)_{{i - \frac{1}{2},j,k}}^{n + 1} \\& \quad\left[ {\frac{{p_{{o_{i,j,k} }} - p_{{o_{i - 1,j,k} }} }}{{\Delta x_{{i - \frac{1}{2},j,k}} }} - \gamma_{{o_{{i - \frac{1}{2},j,k}} }} \frac{{D_{i,j,k} - D_{i - 1,j,k} }}{{\Delta x_{{i - \frac{1}{2},j,k}} }}} \right]^{n + 1}\end{aligned}$$
(5.155)

By substituting Eqs. (5.154) and (5.155) into Eq. (5.152):

$$\begin{aligned} & \frac{{\partial v_{{g,~x_{{i,j,k}} }}^{{n + 1}} }}{{\partial x}} \\ & \;\; = \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\rho _{g} x_{c} \frac{{k_{x} k_{{rg}} }}{{\mu _{g} }}}}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}} \left( {(p_{{g_{{i + 1,j,k}} }} - p_{{g_{{i,j,k}} }} ) - \gamma _{{g_{{i + \frac{1}{2},j,k}} }} \left( {D_{{i + 1,j,k}} - D_{{i,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \;\; - \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\rho _{g} x_{c} \frac{{k_{x} k_{{rg}} }}{{\mu _{g} }}}}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}} \left( {(p_{{g_{{i,j,k}} }} - p_{{g_{{i - 1,j,k}} }} ) - \gamma _{{g_{{i - \frac{1}{2},j,k}} }} \left( {D_{{i,j,k}} - D_{{i - 1,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ \end{aligned}$$
(5.156)

Gas convective flux term can be discretized by the same manner as:

$$\begin{aligned} &\frac{{\partial v_{{g, x_{i,j,k} }}^{n + 1} }}{\partial x}\\&\;\; = \frac{1}{{\Delta x_{i,j,k} }}\left[ {\left( {\frac{{\rho_{g} x_{c} \frac{{k_{x} k_{rg} }}{{\mu_{g} }}}}{\Delta x}} \right)_{{i + \frac{1}{2},j,k}} \left( {(p_{{g_{i + 1,j,k} }} - p_{{g_{i,j,k} }} ) - \gamma_{{g_{{i + \frac{1}{2},j,k}} }} \left( {D_{i + 1,j,k} - D_{i,j,k} } \right)} \right)} \right]^{n + 1} \\ & \;\; - \frac{1}{{\Delta x_{i,j,k} }}\left[ {\left( {\frac{{\rho_{g} x_{c} \frac{{k_{x} k_{rg} }}{{\mu_{g} }}}}{\Delta x}} \right)_{{i - \frac{1}{2},j,k}} \left( {(p_{{g_{i,j,k} }} - p_{{g_{i - 1,j,k} }} ) - \gamma_{{g_{{i - \frac{1}{2},j,k}} }} \left( {D_{i,j,k} - D_{i - 1,j,k} } \right)} \right)} \right]^{n + 1} \\ \end{aligned}$$
(5.157)

5.1.2.2 Discretization the Oil and Gas Diffusive Flux Term in x-Direction

Oil diffusive flux term will be discretized first as:

$$\begin{aligned} & \frac{\partial }{\partial x}\left( {\phi \rho_{o} S_{o} \left( {D_{c,o} \frac{{\partial x_{c} }}{\partial x}} \right)} \right)_{i,j,k}^{n + 1} \\ & = \frac{1}{{\Delta x_{i,j,k} }}\left[ {\left( {\phi \rho_{o} S_{o} \left( {D_{c,o} \frac{{\partial x_{c} }}{\partial x}} \right)} \right)_{{i + \frac{1}{2},j,k}}^{n + 1} - \left( {\phi \rho_{o} S_{o} \left( {D_{c,o} \frac{{\partial x_{c} }}{\partial x}} \right)} \right)_{{i - \frac{1}{2},j,k}}^{n + 1} } \right] \\ \end{aligned}$$
(5.158)

Expanding the (i+1/2) and (i−1/2) term in Eq. (5.158):

$$\left( {\phi \rho_{o} S_{o} \left( {D_{c,o} \frac{{\partial x_{c} }}{\partial x}} \right)} \right)_{{i + \frac{1}{2},j,k}}^{n + 1} = \left( {\frac{{\phi \rho_{o} S_{o} D_{c,o} }}{\Delta x}} \right)_{{i + \frac{1}{2},j,k}}^{n + 1} \left( {x_{{c_{i + 1,j,k} }} - x_{{c_{i,j,k} }} } \right)^{n + 1}$$
(5.159)
$$\left( {\phi \rho_{o} S_{o} \left( {D_{c,o} \frac{{\partial x_{c} }}{\partial x}} \right)} \right)_{{i - \frac{1}{2},j,k}}^{n + 1} = \left( {\frac{{\phi \rho_{o} S_{o} D_{c,o} }}{\Delta x}} \right)_{{i - \frac{1}{2},j,k}}^{n + 1} \left( {x_{{c_{i,j,k} }} - x_{{c_{i - 1,j,k} }} } \right)^{n + 1}$$
(5.160)

Substituting Eqs. (5.159) and (5.160) in Eq. (5.158):

$$\begin{aligned} & \frac{\partial }{{\partial x}}\left( {\phi \rho _{o} S_{o} \left( {D_{{c,o}} \nabla x_{c} } \right)} \right)_{{i,j,k}}^{{n + 1}} \\ & \;\; = \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\phi \rho _{o} S_{o} D_{{c,o}} }}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}}^{{n + 1}} \left( {x_{{c_{{i + 1,j,k}} }} - x_{{c_{{i,j,k}} }} } \right)^{{n + 1}} } \right. \\ & \left. {\;\; - \left( {\frac{{\phi \rho _{o} S_{o} D_{{c,o}} }}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}}^{{n + 1}} \left( {x_{{c_{{i,j,k}} }} - x_{{c_{{i - 1,j,k}} }} } \right)^{{n + 1}} } \right] \\ \end{aligned}$$
(5.161)

The same procedure can be used to discretize gas molecular diffusion term as:

$$\begin{aligned} & \frac{\partial }{{\partial x}}\left( {\phi \rho _{g} S_{g} \left( {D_{{c,g}} \nabla y_{c} } \right)} \right)_{{i,j,k}}^{{n + 1}} \\ & \;\; = \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\phi \rho _{g} S_{g} D_{{c,g}} }}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}}^{{n + 1}} \left( {y_{{c_{{i + 1,j,k}} }} - y_{{c_{{i,j,k}} }} } \right)^{{n + 1}} } \right. \\ &\left. { \;\; - \left( {\frac{{\phi \rho _{g} S_{g} D_{{c,g}} }}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}}^{{n + 1}} \left( {y_{{c_{{i,j,k}} }} - y_{{c_{{i - 1,j,k}} }} } \right)^{{n + 1}} } \right] \\ \end{aligned}$$
(5.162)

5.1.2.3 Discretization the Accumulation Term

The accumulation term is discretized by using regressive finite differences in time as:

$$\begin{aligned} & \frac{\partial }{\partial t}\left[ {\phi \left( {x_{c} \rho_{o} S_{o} + y_{c} \rho_{g} S_{g} } \right)} \right]_{i,j,k} \\ & \;\; = \frac{1}{\Delta t}\left[ {\left( {\phi x_{c} \rho_{o} S_{o} + \phi y_{c} \rho_{g} S_{g} } \right)^{n + 1} - \left( {\phi x_{c} \rho_{o} S_{o} + \phi y_{c} \rho_{g} S_{g} } \right)^{n} } \right]_{i,j,k} \\ \end{aligned}$$
(5.163)

5.1.2.4 Final Form of Discretized Flow Equations

Substituting Eqs. (5.156), (5.157), (5.161), (5.162), and (5.163) into Eq. (5.149):

$$\begin{aligned} & \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\rho _{o} x_{c} \frac{{k_{x} k_{{ro}} }}{{\mu _{o} }}}}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}} \left( {(p_{{o_{{i + 1,j,k}} }} - p_{{o_{{i,j,k}} }} ) - \gamma _{{o_{{i + \frac{1}{2},j,k}} }} \left( {D_{{i + 1,j,k}} - D_{{i,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \; - \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\rho _{o} x_{c} \frac{{k_{x} k_{{ro}} }}{{\mu _{o} }}}}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}} \left( {(p_{{o_{{i,j,k}} }} - p_{{o_{{i - 1,j,k}} }} ) - \gamma _{{o_{{i - \frac{1}{2},j,k}} }} \left( {D_{{i,j,k}} - D_{{i - 1,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \; + ~\frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\rho _{g} y_{c} \frac{{k_{x} k_{{rg}} }}{{\mu _{g} }}}}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}} \left( {(p_{{g_{{i + 1,j,k}} }} - p_{{g_{{i,j,k}} }} ) - \gamma _{{g_{{i + \frac{1}{2},j,k}} }} \left( {D_{{i + 1,j,k}} - D_{{i,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \; - \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\rho _{g} y_{c} \frac{{k_{x} k_{{rg}} }}{{\mu _{g} }}}}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}} \left( {(p_{{g_{{i,j,k}} }} - p_{{g_{{i - 1,j,k}} }} ) - \gamma _{{g_{{i - \frac{1}{2},j,k}} }} \left( {D_{{i,j,k}} - D_{{i - 1,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \; + \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\phi \rho _{o} S_{o} D_{{c,o}} }}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}}^{{n + 1}} \left( {x_{{c_{{i + 1,j,k}} }} - x_{{c_{{i,j,k}} }} } \right)^{{n + 1}} } \right. \\ &\left. {\;\; - \left( {\frac{{\phi \rho _{o} S_{o} D_{{c,o}} }}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}}^{{n + 1}} \left( {x_{{c_{{i,j,k}} }} - x_{{c_{{i - 1,j,k}} }} } \right)^{{n + 1}} } \right] \\ & \; + \frac{1}{{\Delta x_{{i,j,k}} }}\left[ {\left( {\frac{{\phi \rho _{g} S_{g} D_{{c,g}} }}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}}^{{n + 1}} \left( {y_{{c_{{i + 1,j,k}} }} - y_{{c_{{i,j,k}} }} } \right)^{{n + 1}} } \right. \\ &\left. { \;\; - \left( {\frac{{\phi \rho _{g} S_{g} D_{{c,g}} }}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}}^{{n + 1}} \left( {y_{{c_{{i,j,k}} }} - y_{{c_{{i - 1,j,k}} }} } \right)^{{n + 1}} } \right] \\ & \; + \left( {q_{{D,fm,c}} + q_{{C,fm,c}} } \right)_{{i,j,k}}^{{n + 1}} \\ & \; = \frac{1}{{\Delta t}}\left[ {\left( {\phi x_{c} \rho _{o} S_{o} + \phi y_{c} \rho _{g} S_{g} } \right)^{{n + 1}} - \left( {\phi x_{c} \rho _{o} S_{o} + \phi y_{c} \rho _{g} S_{g} } \right)^{n} } \right]_{{i,j,k}} \\ \end{aligned}$$
(5.164)

Multiplying Eq. (5.164) by the volume of the grid cell, \(V_{r,i,j,k} = \Delta y_{i,j,k} \Delta z_{i,j,k} \Delta x_{i,j,k}\), and rearranging, it becomes:

$$\begin{aligned} & \left[ {\left( {\frac{{\Delta y_{{i,j,k}} \Delta z_{{i,j,k}} \rho _{o} x_{c} \frac{{k_{x} k_{{ro}} }}{{\mu _{o} }}}}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}} \left( {(p_{{o_{{i + 1,j,k}} }} - p_{{o_{{i,j,k}} }} ) - \gamma _{{o_{{i + \frac{1}{2},j,k}} }} \left( {D_{{i + 1,j,k}} - D_{{i,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \; - \left[ {\left( {\frac{{\Delta y_{{i,j,k}} \Delta z_{{i,j,k}} \rho _{o} x_{c} \frac{{k_{x} k_{{ro}} }}{{\mu _{o} }}}}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}} \left( {(p_{{o_{{i,j,k}} }} - p_{{o_{{i - 1,j,k}} }} ) - \gamma _{{o_{{i - \frac{1}{2},j,k}} }} \left( {D_{{i,j,k}} - D_{{i - 1,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \; + ~\left[ {\left( {\frac{{\Delta y_{{i,j,k}} \Delta z_{{i,j,k}} \rho _{g} y_{c} \frac{{k_{x} k_{{rg}} }}{{\mu _{g} }}}}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}} \left( {(p_{{g_{{i + 1,j,k}} }} - p_{{g_{{i,j,k}} }} ) - \gamma _{{g_{{i + \frac{1}{2},j,k}} }} \left( {D_{{i + 1,j,k}} - D_{{i,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \; - \left[ {\left( {\frac{{\Delta y_{{i,j,k}} \Delta z_{{i,j,k}} \rho _{g} y_{c} \frac{{k_{x} k_{{rg}} }}{{\mu _{g} }}}}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}} \left( {(p_{{g_{{i,j,k}} }} - p_{{g_{{i - 1,j,k}} }} ) - \gamma _{{g_{{i - \frac{1}{2},j,k}} }} \left( {D_{{i,j,k}} - D_{{i - 1,j,k}} } \right)} \right)} \right]^{{n + 1}} \\ & \; + \left[ {\left( {\frac{{\Delta y_{{i,j,k}} \Delta z_{{i,j,k}} \phi \rho _{o} S_{o} D_{{c,o}} }}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}}^{{n + 1}} \left( {x_{{c_{{i + 1,j,k}} }} - x_{{c_{{i,j,k}} }} } \right)^{{n + 1}} } \right. \\ &\left. {\;\; - \left( {\frac{{\Delta y_{{i,j,k}} \Delta z_{{i,j,k}} \phi \rho _{o} S_{o} D_{{c,o}} }}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}}^{{n + 1}} \left( {x_{{c_{{i,j,k}} }} - x_{{c_{{i - 1,j,k}} }} } \right)^{{n + 1}} } \right] \\ & \; + \left[ {\left( {\frac{{\phi \Delta y_{{i,j,k}} \Delta z_{{i,j,k}} \rho _{g} S_{g} D_{{c,g}} }}{{\Delta x}}} \right)_{{i + \frac{1}{2},j,k}}^{{n + 1}} \left( {y_{{c_{{i + 1,j,k}} }} - y_{{c_{{i,j,k}} }} } \right)^{{n + 1}} } \right. \\ &\left. {\;\; - \left( {\frac{{\Delta y_{{i,j,k}} \Delta z_{{i,j,k}} \phi \rho _{g} S_{g} D_{{c,g}} }}{{\Delta x}}} \right)_{{i - \frac{1}{2},j,k}}^{{n + 1}} \left( {y_{{c_{{i,j,k}} }} - y_{{c_{{i - 1,j,k}} }} } \right)^{{n + 1}} } \right] \\ & \; + \left( {q_{{D,fm,c}} + q_{{C,fm,c}} } \right)_{{i,j,k}}^{{n + 1}} \\ & \;\; = \frac{{V_{{r,i,j,k}} }}{{\Delta t}}\left[ {\left( {\phi x_{c} \rho _{o} S_{o} + \phi y_{c} \rho _{g} S_{g} } \right)^{{n + 1}} - \left( {\phi x_{c} \rho _{o} S_{o} + \phi y_{c} \rho _{g} S_{g} } \right)^{n} } \right]_{{i,j,k}} \\ \end{aligned}$$
(5.165)

Now, defining the transmissibility terms for oil and gas phases as:

$$T_{{o_{{i \pm \frac{1}{2},j,k}} }} = \left( {\frac{{\Delta y_{i,j,k} \Delta z_{i,j,k} \rho_{o} \frac{{k_{x} k_{ro} }}{{\mu_{o} }}}}{\Delta x}} \right)_{{i \pm \frac{1}{2},j,k}}$$
(5.166)
$$T_{{o_{{i \pm \frac{1}{2},j,k}} }} = \left( {\frac{{\Delta y_{i,j,k} \Delta z_{i,j,k} \rho_{g} \frac{{k_{x} k_{rg} }}{{\mu_{g} }}}}{\Delta x}} \right)_{{i \pm \frac{1}{2},j,k}}$$
(5.167)
$$T_{{o,c_{{i \pm \frac{1}{2},j,k}} }}^{M} = \left( {\frac{{\Delta y_{i,j,k} \Delta z_{i,j,k} \phi \rho_{o} S_{o} D_{c,o} }}{\Delta x}} \right)_{{i + \frac{1}{2},j,k}}$$
(5.168)
$$T_{{g,c_{{i \pm \frac{1}{2},j,k}} }}^{M} = \left( {\frac{{\Delta y_{i,j,k} \Delta z_{i,j,k} \phi \rho_{g} S_{g} D_{c,g} }}{\Delta x}} \right)_{{i + \frac{1}{2},j,k}}$$
(5.169)

Substituting Eqs. (5.166) through (5.169) into Eq. (5.165), it becomes:

$$\begin{aligned} & \left[ {\left( {T_{o} x_{c} } \right)_{{i + \frac{1}{2},j,k}} \left( {(p_{{o_{i + 1,j,k} }} - p_{{o_{i,j,k} }} ) - \gamma_{{o_{{i + \frac{1}{2},j,k}} }} \left( {D_{i + 1,j,k} - D_{i,j,k} } \right)} \right)} \right]^{n + 1} \\ & \quad - \left[ {\left( {T_{o} x_{c} } \right)_{{i - \frac{1}{2},j,k}} \left( {(p_{{o_{i,j,k} }} - p_{{o_{i - 1,j,k} }} ) - \gamma_{{o_{{i - \frac{1}{2},j,k}} }} \left( {D_{i,j,k} - D_{i - 1,j,k} } \right)} \right)} \right]^{n + 1} \\ & \quad + \left[ {\left( {T_{g} y_{c} } \right)_{{i + \frac{1}{2},j,k}} \left( {(p_{{g_{i + 1,j,k} }} - p_{{g_{i,j,k} }} ) - \gamma_{{g_{{i + \frac{1}{2},j,k}} }} \left( {D_{i + 1,j,k} - D_{i,j,k} } \right)} \right)} \right]^{n + 1} \\ & \quad - \left[ {\left( {T_{g} y_{c} } \right)_{{i - \frac{1}{2},j,k}} \left( {(p_{{g_{i,j,k} }} - p_{{g_{i - 1,j,k} }} ) - \gamma_{{g_{{i - \frac{1}{2},j,k}} }} \left( {D_{i,j,k} - D_{i - 1,j,k} } \right)} \right)} \right]^{n + 1} \\ & \quad + \left[ {\left( {T_{o,c}^{M} } \right)_{{i + \frac{1}{2},j,k}}^{n + 1} \left( {x_{{c_{i + 1,j,k} }} - x_{{c_{i,j,k} }} } \right)^{n + 1} - \left( {T_{o,c}^{M} } \right)_{{i - \frac{1}{2},j,k}}^{n + 1} \left( {x_{{c_{i,j,k} }} - x_{{c_{i - 1,j,k} }} } \right)^{n + 1} } \right] \\ & \quad + \left[ {\left( {T_{g,c}^{M} } \right)_{{i + \frac{1}{2},j,k}}^{n + 1} \left( {y_{{c_{i + 1,j,k} }} - y_{{c_{i,j,k} }} } \right)^{n + 1} - \left( {T_{g,c}^{M} } \right)_{{i - \frac{1}{2},j,k}}^{n + 1} \left( {y_{{c_{i,j,k} }} - y_{{c_{i - 1,j,k} }} } \right)^{n + 1} } \right] \\ & \quad + \left( {q_{D,fm,c} + q_{C,fm,c} } \right)_{i,j,k}^{n + 1} \\&\quad= \frac{{V_{r,i,j,k} }}{\Delta t}\left[ {\left( {\phi x_{c} \rho_{o} S_{o} + \phi y_{c} \rho_{g} S_{g} } \right)^{n + 1} - \left( {\phi x_{c} \rho_{o} S_{o} + \phi y_{c} \rho_{g} S_{g} } \right)^{n} } \right]_{i,j,k} \\ \end{aligned}$$
(5.170)

Equation (5.170) can also be written as:

$$\begin{aligned} & \Delta \left[ {T_{o} x_{c} \left( {\Delta p_{o} - \Delta \left( {\gamma_{o} D} \right)} \right)} \right]_{i,j,k}^{n + 1} + \Delta \left[ {T_{g} y_{c} \left( {\Delta p_{g} - \Delta \left( {\gamma_{g} D} \right)} \right)} \right]_{i,j,k}^{n + 1} \\ & + \Delta \left[ {T_{o,c}^{M} \Delta x_{c} } \right]_{i,j,k}^{n + 1} + \Delta \left[ {T_{g,c}^{M} \Delta y_{c} } \right]_{i,j,k}^{n + 1} + \left( {q_{D,fm,c} + q_{C,fm,c} } \right)_{i,j,k}^{n + 1} \\ & = \frac{{V_{r,i,j,k} }}{\Delta t}\Delta_{t} \left[ {\phi x_{c} \rho_{o} S_{o} + \phi y_{c} \rho_{g} S_{g} } \right]_{i,j,k} \\ \end{aligned}$$
(5.171)

Equation (5.171) is the final discretized form of the hydrocarbon flow equations in x direction. Following the same procedure, the discretized water flow equation in x direction becomes:

$$\Delta \left[ {T_{w} \left( {\Delta p_{w} - \gamma_{w} \Delta D} \right)} \right]_{i,j,k}^{n + 1} = \frac{{V_{r,i,j,k} }}{\Delta t}\Delta_{t} \left[ {\phi \rho_{w} S_{w} } \right]_{i,j,k}$$
(5.172)

where

$$T_{{w_{{i \pm \frac{1}{2},j,k}} }} = \left( {\frac{{\Delta y_{i,j,k} \Delta z_{i,j,k} \rho_{w} \frac{{k_{x} k_{rw} }}{{\mu_{w} }}}}{\Delta x}} \right)_{{i \pm \frac{1}{2},j,k}}$$
(5.173)

5.1.3 Appendix C: Newton–Raphson Method

The Newton–Raphson method to solve a set of nonlinear equations is described in detail. The problem consists of solving the following set of non-linear equations:

$$\begin{array}{*{20}l} {F_{1} \left( {x_{1} ,x_{2} , \ldots ,x_{n} } \right)} \hfill \\ {F_{2} \left( {x_{1} ,x_{2} , \ldots ,x_{n} } \right)} \hfill \\ \cdot \hfill \\ \cdot \hfill \\ \cdot \hfill \\ {F_{n} \left( {x_{1} ,x_{2} , \ldots ,x_{n} } \right)} \hfill \\ \end{array}$$
(5.174)

or,

$$F_{i} (x) = 0$$
(5.175)

where Fi, i = 1,2,…,n are the equations and x1, x2, …, xn are the unknowns. To develop the Newton–Raphson algorithm, all functions are first expressed as a Taylor series expansion about an arbitrary point (x1, x2, …,xn, F1, F2, …,Fn) as:

$$\begin{aligned} & F_{i} \left( {x_{1} + \Delta x_{1} ,x_{2} + \Delta x_{2} , \ldots ,x_{n} + \Delta x_{n} } \right) \\ & = F_{i} \left( {x_{1} ,x_{2} , \ldots ,x_{n} } \right) + \Delta x_{1} \frac{{\partial F_{i} }}{{\partial x_{1} }} + \Delta x_{2} \frac{{\partial F_{i} }}{{\partial x_{2} }} + \cdots + \Delta x_{n} \frac{{\partial F_{i} }}{{\partial x_{n} }}\quad \quad \quad i = 1,2, \ldots ,n \\ \end{aligned}$$
(5.176)

The objective is to find the roots of the equations by setting the left-hand sides of these n equations equal to zero. If initial values of the unknowns are assumed, the n equations of Eq. (5.157) can be solved for Δx1, Δx2,…, Δxn. This system of n equations may also be written as:

$$\begin{array}{*{20}l} {\frac{{\partial F_{1} }}{{\partial x_{1} }}\Delta x_{1} + \frac{{\partial F_{1} }}{{\partial x_{2} }}\Delta x_{2} + \cdots + \frac{{\partial F_{1} }}{{\partial x_{n} }}\Delta x_{n} = - F_{1} } \hfill \\ {\frac{{\partial F_{2} }}{{\partial x_{1} }}\Delta x_{1} + \frac{{\partial F_{2} }}{{\partial x_{2} }}\Delta x_{2} + \cdots + \frac{{\partial F_{2} }}{{\partial x_{n} }}\Delta x_{n} = - F_{2} } \hfill \\ \cdot \hfill \\ \cdot \hfill \\ \cdot \hfill \\ {\frac{{\partial F_{n} }}{{\partial x_{1} }}\Delta x_{1} + \frac{{\partial F_{n} }}{{\partial x_{2} }}\Delta x_{2} + \cdots + \frac{{\partial F_{n} }}{{\partial x_{n} }}\Delta x_{n} = - F_{1} } \hfill \\ \end{array}$$
(5.177)

Equation (5.177) can also be expressed in matrix form as:

$$\left[ {\begin{array}{*{20}c} {\frac{{\partial F_{1} }}{{\partial x_{1} }} \frac{{\partial F_{1} }}{{\partial x_{2} }} \ldots \frac{{\partial F_{1} }}{{\partial x_{n} }}} \\ {\frac{{\partial F_{2} }}{{\partial x_{1} }} \frac{{\partial F_{2} }}{{\partial x_{2} }} \ldots \frac{{\partial F_{2} }}{{\partial x_{n} }}} \\ . \\ . \\ . \\ . \\ {\frac{{\partial F_{n} }}{{\partial x_{1} }} \frac{{\partial F_{n} }}{{\partial x_{2} }} \ldots \frac{{\partial F_{n} }}{{\partial x_{n} }}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\Delta x_{1} } \\ {\Delta x_{2} } \\ . \\ . \\ . \\ . \\ {\Delta x_{n} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {F_{1} } \\ {F_{2} } \\ . \\ . \\ . \\ . \\ {F_{n} } \\ \end{array} } \right]$$
(5.178)

Equation (5.178) can be written as:

$$\left[ J \right]\Delta x = - F$$
(5.179)

J is called the Jacobian of the n equations system. The system of Eq. (5.179) can be solved either by Gaussian elimination or by any appropriate procedure. The unknowns (x1, x2, …,xn) are updated after each iteration as:

$$x_{i}^{l + 1} = x_{i}^{l} + \Delta x_{i}^{l + 1} \quad \quad \quad i = 1,2, \ldots ,n$$
(5.180)

where l is the iteration level. The iteration is terminated when \(\max \left( {\left| {\Delta x_{i} } \right|} \right) < tolerance\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamili, A., Izadpanahi, A., Aghaee Shabankareh, P., Azin, R. (2022). Gas Injection for Pressure Maintenance in Fractured Reservoirs. In: Azin, R., Izadpanahi, A. (eds) Fundamentals and Practical Aspects of Gas Injection. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77200-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77200-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77199-7

  • Online ISBN: 978-3-030-77200-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics