Skip to main content

Part of the book series: Petroleum Engineering ((PEEN))

  • 500 Accesses

Abstract

This chapter introduces the PVT challenges of gas injection. First, the phase diagram of various gases, oil samples and mixtures of oil and gas are investigated. In the next part, the important PVT experiments are discussed in details. These experiments consist of CCE (constant composition expansion), DL (differential liberation), CVD (constant volume depletion), flash separation and swelling test. Some calculation must be considered for designing the gas injection process as it is discussed in Sect. 2.4. In Sects. 2.5, 2.6 and 2.7, three cases are studied about change of phase behavior due to gas injection, MMP calculation of gas injection and asphaltene precipitation due to gas injection, respectively. The optimum design of gas injection and PVT challenges associated with gas injection are presented in Sects. 2.8 and 2.9, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GIIP:

Gas Initially in place

MMP:

Minimum Miscibility Pressure

fs:

Fugacity

K:

Dispersion coefficient

L:

Reservoir length

m:

Mass of initial gas in-place, lb

Mw:

Molecular Weight, g/gmol

p:

Pressure, psi

R:

Ideal Gas Constant, ft3.psi/lbmol.R

S:

Saturation

SEO:

Enriched oil slug size

Ss:

Solvent slug size

t:

Time

T:

Temperature, °F

V:

Volume, m3 or ft3

vs:

Molar volume of solid phase

x:

Mole fraction

z:

Compressibility factor

bt:

Breakthrough

d:

Dew-point

EO/O:

Enriched-oil and oil

EO/S:

Enriched-oil and solvent

i:

Initial

inj:

Injected

l:

Liquid

O/S:

Oil-Solvent

origin:

Original

rel:

Relative

sat:

Saturation

S/CG:

Solvent and chase gas

References

  1. Bennion DB, Thomas EB, Bennion DW, Bietz RE. Formation screening to minimize permeability impairment associated with acid gas or sour gas injection/disposal. In: Annual technical meeting. Petroleum Society of Canada; 1996.

    Google Scholar 

  2. Hustad OS, Jia N, Pedersen KS, Memon A, Leekumjorn S. High-pressure data and modeling results for phase behavior and asphaltene onsets of Gulf of Mexico oil mixed with nitrogen. SPE Reserv Eval Eng. 2014;17:384–95.

    Article  Google Scholar 

  3. Kalantari-Dahaghi A, Gholami V, Moghadasi J, Abdi R. Formation damage through asphaltene precipitation resulting from CO2 gas injection in Iranian carbonate reservoirs. SPE Prod Oper. 2008;23:210–4.

    Google Scholar 

  4. Yonebayashi H, Al Mutairi AM, Al Habshi AM, Urasaki D. Dynamic asphaltene behavior for gas-injection risk analysis. SPE Reserv Eval Eng. 2011;14:493–504.

    Article  Google Scholar 

  5. Negahban S, Bahamaish JNM, Joshi N, Nighswander J, Jamaluddin AKM. An experimental study at an Abu Dhabi reservoir of asphaltene precipitation caused by gas injection. SPE Prod Facil. 2005;20:115–25.

    Article  Google Scholar 

  6. Srivastava RK, Huang SS, Dong M. Asphaltene deposition during CO2 flooding. SPE Prod Facil. 1999;14:235–45.

    Article  Google Scholar 

  7. Yonebayashi H, Masuzawa T, Dabbouk C, Urasaki D. Ready for gas injection: asphaltene risk evaluation by mathematical modeling of asphaltene precipitation envelope (APE) with integration of all laboratory deliverables. In: SPE reservoir characterisation and simulation conference. European Association of Geoscientists & Engineers; 2009. p. cp-170.

    Google Scholar 

  8. Yonebayashi H, Takabayashi K, Iizuka R, Tosic S. Managing experimental-data shortfalls for fair screening at concept selection: case study to estimate how acid-gas injection affects asphaltene-precipitation behavior. Oil Gas Facil. 2016;5.

    Google Scholar 

  9. Danesh A. PVT and phase behaviour of petroleum reservoir fluids. Elsevier; 1998.

    Google Scholar 

  10. Osfouri S, Azin R. An overview of challenges and errors in sampling and recombination of gas condensate fluids. J Oil Gas Petrochemical Technol. 2016;3:1–14.

    Google Scholar 

  11. Osfouri S, Azin R, Rezaei Z, Moshfeghian M. Integrated characterization and a tuning strategy for the PVT analysis of representative fluids in a gas condensate reservoir. Iran J Oil Gas Sci Technol. 2018;7:40–59.

    Google Scholar 

  12. Gerami S, Kiani Zakheradi M, Azin R, Osfouri S. A unified approach for quality control of drilled stem test (DST) and PVT data. Gas Process. 2014;2:40–50.

    Google Scholar 

  13. Kesler MG, Lee BI. Improved prediction of enthalpy of fractions: hydrocarbon Processing; 1976.

    Google Scholar 

  14. Green DW, Willhite GP. Enhanced oil recovery, vol. 6. Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers Richardson, TX; 1998.

    Google Scholar 

  15. Chen SM, Olynyk J, Asgarpour S. Effect of multiple-contact miscibility on solvent slug size determination. J Can Pet Technol. 1986;25.

    Google Scholar 

  16. Clark NJ, Shearin HM, Schultz WP, Garms K, Moore JL. Miscible drive—its theory and application. J Pet Technol. 1958;10:11–20.

    Article  Google Scholar 

  17. Holm LW. Miscibility and miscible displacement. J Pet Technol. 1986;38:817–8.

    Article  Google Scholar 

  18. Gu Y, Hou P, Luo W. Effects of four important factors on the measured minimum miscibility pressure and first-contact miscibility pressure. J Chem Eng Data. 2013;58:1361–70.

    Article  Google Scholar 

  19. Yuan H, Johns RT, Egwuenu AM, Dindoruk B. Improved MMP correlations for CO2 floods using analytical gas flooding theory. In: SPE/DOE symposium on improved oil recovery. Society of Petroleum Engineers; 2004.

    Google Scholar 

  20. Johnson JP, Pollin JS. Measurement and correlation of CO2 miscibility pressures. In: SPE/DOE enhanced oil recovery symposium. Society of Petroleum Engineers; 1981.

    Google Scholar 

  21. Alston RB, Kokolis GP, James CF. CO2 minimum miscibility pressure: a correlation for impure CO2 streams and live oil systems. Soc Pet Eng J. 1985;25:268–74.

    Article  Google Scholar 

  22. Cronquist C. Carbon dioxide dynamic miscibility with light reservoir oils. In: Proceedings of the Fourth Annual US DOE Symposium, Tulsa, vol. 1; 1978. p. 28–30.

    Google Scholar 

  23. Shokir EME-M. Precise model for estimating CO2-oil minimum miscibility pressure. Pet Chem. 2007;47:368–76.

    Google Scholar 

  24. Shokir EME-M. CO2-oil minimum miscibility pressure model for impure and pure CO2 streams. J Pet Sci Eng. 2007;58:173–85.

    Google Scholar 

  25. Emera MK, Sarma HK. A reliable correlation to predict the change in minimum miscibility pressure when CO2 is diluted with other gases. SPE Reserv Eval Eng. 2006;9:366–73.

    Article  Google Scholar 

  26. Kamari A, Arabloo M, Shokrollahi A, Gharagheizi F, Mohammadi AH. Rapid method to estimate the minimum miscibility pressure (MMP) in live reservoir oil systems during CO2 flooding. Fuel. 2015;153:310–9.

    Article  Google Scholar 

  27. Kaydani H, Najafzadeh M, Hajizadeh A. A new correlation for calculating carbon dioxide minimum miscibility pressure based on multi-gene genetic programming. J Nat Gas Sci Eng. 2014;21:625–30.

    Article  Google Scholar 

  28. Glaso O. Miscible displacement: recovery tests with nitrogen. SPE Reserv Eng. 1990;5:61–8.

    Article  Google Scholar 

  29. Glaso O. Generalized minimum miscibility pressure correlation (includes associated papers 15845 and 16287). Soc Pet Eng J. 1985;25:927–34.

    Article  Google Scholar 

  30. Firoozabadi A, Khalid A. Analysis and correlation of nitrogen and lean-gas miscibility pressure (includes associated paper 16463). SPE Reserv Eng. 1986;1:575–82.

    Article  Google Scholar 

  31. Kuo SS. Prediction of miscibility for the enriched-gas drive process. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1985.

    Google Scholar 

  32. Pedrood P. Prediction of minimum miscibility pressure in rich gas injection. MSc thesis, Tehran Univ Tehran; 1995.

    Google Scholar 

  33. Zirrahi M, Azin R, Malakooti R. Prediction of minimum miscibility pressure for carbon capture and sequestration and acid gas disposal applications; n.d.

    Google Scholar 

  34. Izadpanahi A, Azin R, Osfouri S, Malakooti R. Asphaltene precipitation in a light oil reservoir with high producing GOR: case study. Adv Nanomater Technol Energy Sect. 2019;3:270–9.

    Google Scholar 

  35. Yang F, Zhao G-B, Adidharma H, Towler B, Radosz M. Effect of oxygen on minimum miscibility pressure in carbon dioxide flooding. Ind Eng Chem Res. 2007;46:1396–401.

    Article  Google Scholar 

  36. Orr Jr FM, Taber JJ. Phase diagrams (1987 PEH Chapter 23). Pet Eng Handb. 1987.

    Google Scholar 

  37. Firoozabadi A. Thermodynamics of hydrocarbon reservoirs. McGraw-Hill; 1999.

    Google Scholar 

  38. Wheaton RJ. Treatment of variations of composition with depth in gas-condensate reservoirs (includes associated papers 23549 and 24109). SPE Reserv Eng. 1991;6:239–44.

    Article  Google Scholar 

  39. Kiani M. Modeling development of compositional grading in hydrocarbon reservoirs. Persian Gulf University; 2019.

    Google Scholar 

  40. Mousavi DSA, Vafaei SM, Mirzaei B, Fasih M. Experimental investigation on asphaltene deposition in porous media during miscible gas injection; 2007.

    Google Scholar 

  41. Minssieux L, Nabzar L, Chauveteau G, Longeron D, Bensalem R. Permeability damage due to asphaltene deposition: experimental and modeling aspects. Rev l’Institut Français Du Pétrole. 1998;53:313–27.

    Article  Google Scholar 

  42. Sunil K, Abdullah A-G, Dimitrios K. Asphaltene precipitation in high gas-oil ratio wells. In: Middle east oil show; 2003.

    Google Scholar 

  43. Hashemi R, Kshirsagar LK, Nandi S, Jadhav PB, Golab EG. Experimental and CMG study of asphaltene precipitation under natural depletion and gas injection conditions. Pet Coal. 2019;61.

    Google Scholar 

  44. Izadpanahi A, Azin R, Osfouri S, Malakooti R. MODELING OF ASPHALTENE PRECIPITATION IN A LIGHT OIL RESERVOIR WITH HIGH PRODUCING GOR: CASE STUDY. In2nd International Biennial Oil, Gas and Petrochemical Conference 2018 Nov.

    Google Scholar 

  45. Izadpanahi A, Azin R, Osfouri S, Malakooti R. Optimization of Two Simultaneous Water and Gas Injection Scenarios in a High GOR Iranian Oil Field. In82nd EAGE Annual Conference & Exhibition 2020 Dec 8 (Vol. 2020, No. 1, pp. 1-5). European Association of Geoscientists & Engineers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Azin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azin, R., Izadpanahi, A., Osfouri, S. (2022). PVT of Gas Injection. In: Azin, R., Izadpanahi, A. (eds) Fundamentals and Practical Aspects of Gas Injection. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77200-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77200-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77199-7

  • Online ISBN: 978-3-030-77200-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics